深度学习
文章平均质量分 55
深度学习入门中,我将在这里记录和分享所学习到的内容
几度热忱
很喜欢的三句话:
少一点半途而废;
不借谁的光,做自己的太阳;
纸上得来终觉浅,绝知此事要躬行。
展开
-
配置深度学习环境:在Windows(Win10)中安装CUDA,CUDNN,Pytorch GPU版
配置深度学习环境详细教程:在Windows(Win10)中安装CUDA,CUDNN,Pytorch GPU版原创 2022-10-18 19:33:41 · 6815 阅读 · 7 评论 -
【Nvidia Driver安装】Ubuntu下显卡驱动的安装及踩坑日记 安装驱动后掉网卡、无网络 内核升级等情况
【Nvidia Driver安装】Ubuntu下显卡驱动的安装及踩坑日记 安装驱动后掉网卡、无网络 内核升级等情况1.Ubuntu中安装显卡驱动的方法2.踩坑日记:安装显卡驱动后掉网卡 无网络 内核升级3.解决方法4.安装后出现开机黑屏、内核升级等问题的解决方案原创 2024-10-20 18:02:24 · 1070 阅读 · 0 评论 -
【conda环境打包】ubuntu的conda环境打包导出方法 conda-pack
【conda环境打包】ubuntu的conda环境打包导出方法 conda-packubuntu下anaconda虚拟环境打包ubuntu20.04 conda pack 打包虚拟环境,直接将其用到其他终端使用conda-pack迁移环境原创 2024-10-20 17:31:47 · 427 阅读 · 0 评论 -
【Docker】Ubuntu下Docker的基本使用方法与常用命令总结
【Docker】Ubuntu下Docker的基本使用方法与常用命令总结。镜像image与容器container的关系基本命令- 查看 Docker 版本- 拉取镜像- 查看系统中的镜像- 删除某个镜像- 列出当前 Docker 主机上的所有容器,包括正在运行的、暂停的、已停止的,以及未运行的容器- 列出当前 Docker 主机上的正在运行的容器- 进入正在运行的容器- 退出容器- 删除容器- 使用 docker start 命令后跟容器 ID 或名称来启动容器- 停止正在运行的容器原创 2024-05-12 12:28:42 · 2075 阅读 · 0 评论 -
【深度学习】wandb模型训练可视化工具使用方法
Wandb(Weights & Biases)是一款专为机器学习和深度学习设计的可视化工具,旨在帮助开发者更高效地跟踪、可视化和共享实验结果提供在线平台,可以轻松记录实验的超参数、输出指标以及模型的变化,并通过直观的仪表盘展示这些信息与tensorboard类似,均是机器学习可视化分析工具wandb相较于Tensorboard的优势:1.wandb的日志文件上传云端存储,可永久保存,tensorboard存储在本地2.wandb存储代码,数据集,模型,原创 2024-04-17 10:10:00 · 3481 阅读 · 1 评论 -
【深度学习】执行wandb sync同步命令报错wandb: Network error (SSLError), entering retry loop
【代码】【深度学习】执行wandb sync同步命令报错wandb: Network error (SSLError), entering retry loop。原创 2024-04-16 20:11:19 · 1376 阅读 · 3 评论 -
【深度学习环境配置】一文弄懂cuda,cudnn,NVIDIA Driver version,cudatoolkit的关系
查看自身显卡的算力,在此网站中搜索显卡型号,可以看到我显卡对应的算力是7.5该网站的后面有CUDA版本和算力的对应关系,查看显卡算力支持的CUDA版本原创 2024-04-06 19:32:29 · 2382 阅读 · 0 评论 -
【Pytorch入门】小土堆PyTorch入门教程完整学习笔记(详细笔记并附练习代码 ipynb文件)
【Pytorch入门】小土堆PyTorch入门教程完整学习笔记(详细笔记 文末附练习代码 ipynb文件)原创 2024-03-28 15:27:17 · 10057 阅读 · 17 评论 -
【监控GPU】监控NVIDIA GPU显卡占用状态的常用命令
每隔X秒执行一次 nvidia-smi 命令,并持续显示 GPU 的使用情况。这样可以更频繁地更新 GPU 的状态信息,提供更实时的监控数据。nvitop 是一个基于 NVIDIA GPU 的实时性能监控工具,类似于 Linux 系统上的 top 命令。windows下可使用以下命令,可达到类似效果,每秒更新一次信息,但每次都会打印一遍信息 体验不是很好。nvitop能够以可视化的方式展示GPU的实时数据,对于监控 GPU 的性能和状态非常有用。每隔 0.5 秒执行一次nvidia-smi命令。原创 2024-03-23 20:11:54 · 9600 阅读 · 0 评论 -
【Anaconda报错】DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): repo.anaconda.com:443
【Anaconda报错】DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): repo.anaconda.com:443 Collecting package metadata (current_repodata.json): - DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): conda.anaconda.org:443DEBUG:urllib3.co原创 2024-03-15 21:16:35 · 2555 阅读 · 0 评论 -
《动手学深度学习》2.2数据操作练习代码
最近在阅读动手学深度学习一书,记录一些跟着书写的实例代码 供大家参考from mxnet import ndx = nd.arange(12)print(x)print(x.shape) #shape获得数组的形状print(x.size) #size获得数组元素个数y=x.reshape(3,4) #reshape可以改变数组形状print(y)print(y.shape)z = nd.zeros((2, 3, 4)) #生成零矩阵 注意括号 维度要包含在括号中 (2,3,4)pr原创 2021-09-03 20:31:06 · 323 阅读 · 0 评论 -
动手学深度学习----线性回归的简洁实现
线性回归的简洁实现—调用pytorch中封装好的函数#线性回归的简洁实现import numpy as npimport torchfrom torch.utils import datafrom d2l import torch as d2lfrom torch import nn # nn是神经网络的缩写true_w = torch.tensor([2, -3.4])true_b = 4.2features, labels = d2l.synthetic_data(true_w,原创 2022-03-29 11:44:48 · 1303 阅读 · 0 评论 -
动手学深度学习----线性回归(从0开始实现)
基础概念线性回归的过程是已知数据点,需要通过一条直线来拟合这些点,这条直线对应的参数 都是通过线性回归求得例子:假设y = X × w + b y是一个房子的价格 X是一个向量[X1,X2],X1是面积,X2是位置,是影响y的因素,w是X中对应的权重[w1,w2]T, b 是偏差y=w1 × X1+ w2 × X2+b 通过梯度下降寻找不断更新参数以得到最优解从0实现线性回归代码是指定w为 [2, 3.4]T b为4.2 构造一个随机数据集通过梯度下降 线性回归去用一条直线近似生原创 2022-03-29 10:00:55 · 2364 阅读 · 0 评论 -
conda创建,进入,退出,删除,查看虚拟环境指令(Windows下)
conda创建,进入,退出,删除,查看虚拟环境指令(Windows下)创建虚拟环境 name仅为示例,替换为你想起的虚拟环境名字即可conda create -n name python=3.X进入虚拟环境activate name退出虚拟环境conda deactivate 查看已有的所有虚拟环境conda-env list或conda env list查看当前环境下安装的包与其版本conda list...原创 2021-09-16 18:38:58 · 781 阅读 · 0 评论 -
PyCharm新建项目选择虚拟环境
已经在pycharm中创建虚拟环境的python解释器并选择它 但运行时仍然报错 后查阅发现项目的解释器在创建环境时就已经确定 需要new project选择解释器File -> New Project在弹出界面中选择新建虚拟环境或已存在的虚拟环境即可...原创 2021-09-01 22:10:35 · 436 阅读 · 0 评论 -
在PyCharm中加载和使用虚拟环境
在PyCharm中加载和使用虚拟环境在这里默认大家已经完成了PyCharm的安装以及虚拟环境的创建,以上如未完成请查阅相关内容,网上教程很多,在此不再赘述(1)打开PyCharm ->file->Settings(2)Project->Project Interpreter 点击齿轮的图标点击Add(3)点击右边省略号,找到虚拟环境路径中的python.exe,点击OK虚拟环境在envs目录下 我的虚拟环境名为gluon一路点OK 接下来会跳转到下图界面,可以查看到原创 2021-09-01 16:21:55 · 1213 阅读 · 0 评论 -
查看本地计算机或服务器GPU资源的命令
查看GPU使用情况的命令:nvidia-smi该指令会返回一个方格,其中包含GPU当前所有的状态信息- 显卡型号- Fan:风扇转速- Temp:GPU温度- Perf:性能状态P12(低)->P0(高)- Pwr:GPU功耗原创 2021-09-25 15:00:02 · 2388 阅读 · 0 评论 -
查看虚拟环境安装的第三方包
查看虚拟环境安装的第三方包pip list原创 2021-08-16 20:47:35 · 1665 阅读 · 0 评论