【Nvidia Driver安装】Ubuntu下显卡驱动的安装及踩坑日记 安装驱动后掉网卡、无网络 内核升级等情况

【Nvidia Driver安装】Ubuntu下显卡驱动的安装及踩坑日记 安装驱动后掉网卡、无网络 内核升级等情况

1.Ubuntu中安装显卡驱动的方法

  • 如果刚装完ubuntu系统 建议先执行一下命令,用于更新系统软件包
sudo apt update && sudo apt upgrade 
  • ubuntu安装nvidia driver显卡驱动可查看这里的视频3分钟安装ubuntu20.04显卡驱动
  • 安装前请看第二部分的踩坑日记,避免踩坑
  • Ubuntu下安装NVIDIA Driver方法为:应用菜单栏–》软件和更新–》附加驱动
    在这里插入图片描述

2.踩坑日记:安装显卡驱动后掉网卡 无网络 内核升级

  • 设备情况:ubuntu 24.04 刚重装完系统,显卡为RTX3090 无显卡驱动,有网,按照上述安装步骤安装显卡驱动550版本
  • 安装显卡驱动重启后发现 显卡驱动已安装 但是没有网络 =_ = 川

3.解决方法

  • 建议重装系统 重新安装显卡驱动
  • 借用这篇帖子Ubuntu20.04安装Nvidia显卡驱动(如3090)后,网络丢失博主实践的结论是:在附加驱动中的显卡驱动里选择不含server、开源和open kernel这些字样的驱动,安装就正常,不会有黑屏(535版本),不会掉网络(525版本)
  • 当我重装系统 重装显卡驱动避开上述字眼 安装后可以正常使用

4.安装后出现开机黑屏、内核升级等问题的解决方案

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度热忱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值