2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem (状态压缩)

标签: acm-icpc 状态压缩
707人阅读 评论(8) 收藏 举报
分类:

The frequent subset problem is defined as follows. Suppose UU={1, 2,\ldots,N} is the universe, and S_{1}S1S_{2}S2,\ldots,S_{M}SMare MM sets over UU. Given a positive constant \alphaα0<\alpha \leq 10<α1, a subset BB (B \neq 0B0) is α-frequent if it is contained in at least \alpha MαM sets of S_{1}S1S_{2}S2,\ldots,S_{M}SM, i.e. \left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M{i:BSi}αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U=\{1, 2,3,4,5\}U={1,2,3,4,5}M=3M=3\alpha =0.5α=0.5, and S_{1}=\{1, 5\}S1={1,5}S_{2}=\{1,2,5\}S2={1,2,5}S_{3}=\{1,3,4\}S3={1,3,4}. Then there are 33 α-frequent subsets of UU, which are \{1\}{1},\{5\}{5} and \{1,5\}{1,5}.

Input Format

The first line contains two numbers NN and \alphaα, where NN is a positive integers, and \alphaα is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i + 1i+1 contains S_{i}Si1 \le i \le M1iM . Your program should be able to handle NN up to 2020 and MM up to 5050.

Output Format

The number of \alphaα-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

你怎么看待2017ICPC南宁网络赛,躺着看啊,我已经扶不起来了,彻彻底底输给英语没有!

这个题就是求所有集合中子集出现概率大于等于K的总的子集的个数。

最多20个数,50个集合,关键是不给集合的个数,不给每个集合元素的个数,这题目很可以。要求20个数在50个集合中是否存在,枚举的话需要20!次,肯定超时,顺理成章的想到状态压缩,把每个集合都状态压缩一下,这样就构成了一个新的数,再去枚举每一种状态,也就是每个字符在每一个串中是否出现的情况,把这两种状态&运算,得到的数代表原集合中有多少个这样的子集,最后将得到概率跟K比较,大于等于就自加,注意精度问题,要k值要减去eps才能得到结果。

代码实现:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<cstdio>
#define ll long long
#define lz 2*u,l,mid  
#define rz 2*u+1,mid+1,r
#define mset(a,x) memset(a,x,sizeof(a))

using namespace std;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-12;
const int maxn=400005;
const int mod=1e9+7;
int dir[4][2]={0,1,1,0,0,-1,-1,0};
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}
int a[101];

int main()
{
	int n,x,i;
	double k;
    cin>>n>>k;
    n=(1<<n);
    mset(a,0);
    int top=1;
    while(scanf("%d",&x)!=EOF)
    {
        a[top]+=(1<<(x-1));
        if(getchar()=='\n')
		top++;
    }
    int ans=0;
    for(i=1;i<n;i++)
    {
        int c=0;
        for(int j=1;j<=top;j++)
        {
            if((a[j]&i)==i)
                c++;
        }
        if(1.0*c/top>=k-esp)
		ans++;
    }
    cout<<ans<<endl;
	return 0;
}

查看评论

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 F. Overlapping Rectangles(扫描线)

There are nn rectangles on the plane. The problem is to find the area of the union of these rectangl...
  • qq_37497322
  • qq_37497322
  • 2017-09-24 16:57:25
  • 219

B. Train Seats Reservation 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

You are given a list of train stations, say from the station 1 to the station 100.The passengers can...
  • Enterprise_
  • Enterprise_
  • 2017-09-24 16:50:33
  • 233

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem

The frequent subset problem is defined as follows. Suppose UU={1, 2,\ldots…,N} is the universe, ...
  • lzc504603913
  • lzc504603913
  • 2017-09-24 18:47:52
  • 424

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛: G. Finding the Radius for an Inserted Circle(笛卡尔定理)

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛: G. Finding the Radius for an Inserted Circle(笛卡尔定理)Now, given the parame...
  • Mitsuha_
  • Mitsuha_
  • 2017-09-24 18:00:56
  • 575

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 G. Finding the Radius for an Inserted Circle(计算几何,二分)

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 G. Finding the Radius for an Inserted Circle(计算几何,二分)...
  • kele52he
  • kele52he
  • 2017-09-24 18:48:37
  • 350

【 2017 ACM-ICPC 亚洲区(西安赛区)网络赛】 F. Trig Function

,,,
  • GreatJames
  • GreatJames
  • 2017-09-19 20:35:49
  • 271

2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function cos(nx)

( holds for all xx. Given two integers nn and mm, you need to calculate the coefficient of x^mx​m...
  • qq_36553623
  • qq_36553623
  • 2017-09-17 23:57:21
  • 267

2017 ACM-ICPC 亚洲区(西安赛区)网络赛 E Maximum Flow

题目链接题意有 nn 个点,0,1,2,...,n−10,1,2,...,n-1,对于没对点 (0≤i
  • kkkkahlua
  • kkkkahlua
  • 2017-09-17 11:18:37
  • 437

ACM2012长春赛区网络赛——1010

首先一次dfs找到1到n的路径并记录这条路径上的点以及路径长度,这条路径只走一遍,其他走过的路径都需要走两遍,如果当前时间已经大于t了即无解,否则对于每个路径上的点,以这个点为根节点在不包含路径上其他...
  • zero0914
  • zero0914
  • 2012-09-09 00:42:10
  • 900

2017 ACM-ICPC 亚洲区(西安赛区)网络赛 C.Sum(找规律)

Define the function S(x)S(x) for xx is a positive integer. S(x)S(x) equals to the sum of all digit o...
  • qq_37497322
  • qq_37497322
  • 2017-09-16 17:49:33
  • 416
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 6万+
    积分: 2253
    排名: 2万+
    联系方式
    欢迎谈论交流:1245985209
    博客专栏