Adversarial Transformation Networks论文阅读笔记

介绍

现有工作

优化问题

文章将对抗样本问题总结成两个优化问题:
给定分类器 f ( x ) : x ∈ X → y ∈ Y f(x) : x \in \mathcal{X} \rightarrow y \in \mathcal{Y} f(x):xXyY和原始的输入 x ∈ X \mathbf{x} \in \mathcal{X} xX,那么无目标和有目标的对抗样本攻击可以表述成以下的优化问题:

  1. 无目标攻击
    argmin ⁡ x ∗ L ( x , x ∗ )  s.t.  f ( x ∗ ) ≠ f ( x ) \operatorname{argmin}_{\mathbf{x}^{*}} L\left(\mathbf{x}, \mathbf{x}^{*}\right) \text { s.t. } f\left(\mathbf{x}^{*}\right) \neq f(\mathbf{x}) argminxL(x,x) s.t. f(x)̸=f(x)
    其中 L L L是原始样本和对抗样本之间的视觉损失函数,如L2损失。
  2. 有目标攻击
    argmin ⁡ x ⋅ L ( x , x ∗ ) s . t . f ( x ∗ ) = y t ,  where  y t ∈ Y \operatorname{argmin}_{x} \cdot L\left(x, x^{*}\right) s . t . f\left(x^{*}\right)=y_{t}, \text { where } y_{t} \in \mathcal{Y} argminxL(x,x)s.t.f(x)=yt, where ytY
    其中 y y y是指定的目标标签。

解决方法

  1. 基于解优化问题:L-BFGS,C&W
    具有速度慢但是性能好的特点
  2. 基于一步梯度:fast gradient sign(FGSM),fast least likely class(FLLC)
    具有速度快的优势,泛化能力较强
  3. 基于多步梯度:I-FGSM,BIM

本文方法

ATN网络是一个通过神经网络生成对抗样本的过程,可应用于多种应用场景,本文主要讨论有目标的白盒攻击。
ATN网络定义为:
g f , θ ( x ) : x ∈ X → x ′ g_{f, \boldsymbol{\theta}}(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \rightarrow \mathbf{x}^{\prime} gf,θ(x):xXx
其中f是要攻击的目标网络输出每一个类的概率, θ \theta θ是ATN网络的参数,追求视觉损失小: x ′ ∼ x \mathbf{x}^{\prime} \sim \mathbf{x} xx,且分类非原始目标: argmax ⁡ f ( x ) ≠ argmax ⁡ f ( x ′ ) \operatorname{argmax}f(\mathbf{x}) \neq \operatorname{argmax} f\left(\mathbf{x}^{\prime}\right) argmaxf(x)̸=argmaxf(x)

为了找到 g g g,可以解以下优化问题:
argmin ⁡ θ ∑ x i ∈ X β L X ( g f , θ ( x i ) , x i ) + L Y ( f ( g f , θ ( x i ) ) , f ( x i ) ) \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{\mathbf{x}_{i} \in \mathcal{X}} \beta L_{\mathcal{X}}\left(g_{f, \boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), \mathbf{x}_{i}\right)+L_{\mathcal{Y}}\left(f\left(g_{f, \boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right), f\left(\mathbf{x}_{i}\right)\right) θargminxiXβLX(gf,θ(xi),xi)+LY(f(gf,θ(xi)),f(xi))
其中 L X L_{\mathcal{X}} LX是视觉损失, L Y L_{\mathcal{Y}} LY是类别损失。
针对有目标的攻击,文章将 L Y L_{\mathcal{Y}} LY定义为 L Y , t ( y ′ , y ) = L 2 ( y ′ , r ( y , t ) ) L_{\mathcal{Y}, t}\left(\mathbf{y}^{\prime}, \mathbf{y}\right)=L_{2}\left(\mathbf{y}^{\prime}, r(\mathbf{y}, t)\right) LY,t(y,y)=L2(y,r(y,t))
其中
r α ( y , t ) = norm ⁡ ( { α ∗ max ⁡ y  if  k = t y k  otherwise  } k ∈ y ) r_{\alpha}(\mathbf{y}, t)=\operatorname{norm}\left(\left\{\begin{array}{cc}{\alpha * \max \mathrm{y}} & {\text { if } k=t} \\ {y_{k}} & {\text { otherwise }}\end{array}\right\}_{k \in \mathrm{y}}\right) rα(y,t)=norm({αmaxyyk if k=t otherwise }ky)
目的是保持其他类别的先后顺序不变。

生成对抗样本类别

  1. 生成对抗噪声
  2. 生成对抗样本

实验结果 MNIST

  1. 针对单网络设置的ATN不具有泛化能。
  2. ATN网络很好的保持了先后顺序,有利于减少视觉损失。
  3. 针对多网络训练的ATN泛化行会好一些。

imagenet实验待补充

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值