非HA弊端
HDFS集群的分布式存储是靠namenode节点(namenode负责响应客户端请求)来实现。在非HA集群中一旦namenode宕机,虽然元数据不会丢失,但整个集群将无法对外提供服务,导致HDFS服务的可靠性不高,这在实际应用场景中显然是不可行的。HA机制
已知导致服务可靠性不高的原因是namenode节点宕机,那么怎么才能避免这个namenode节点宕机呢?一个容易想到的解决方案是部署两台namenode节点,形成主备模式(active/standby模式),这样一旦active节点宕机,standby节点立即切换到active模式。事实上HA机制就是采取的这种方案。要想实现该机制,需要解决以下问题:
1.为什么选择主备模式,而不是主主模式(active/active模式),也即让两个namenode节点都响应客户端的请求
一个显然的前提是,两台namenode节点需要保存一致的元数据。
我们知道namenode节点是用来管理这些元数据的,响应客户端请求时(上传)需要增加元数据信息,如果使用主主模式,那么两个节点都将对元数据进行写操作,怎么同步是个很困难的问题。因此,只能有一台机器响应请求,也即处在active状态的节点(可称为主节点),而另一台namenode在主节点正常工作情况下仅用来同步active节点的元数据信息,这个namenode称为备用节点(处在standby状态),可见,要解决的问题主要是怎么同步active节点的元数据信息。
2.怎么同步两个namenode节点的元数据
响应客户端请求的是active节点,因此只有active节点保存了最新的元数据。元数据分为两部分,一部分是刚写入新的元数据(edits),另一部分是合并后的较旧的(fsimage)。HA机制解决同步问题的方法是将active节点新写入的edits元数据放在zookeeper集群上(zookeeper集群主要功能是实现少量数据的分布式同步管理),standby节点在active节点正常情况下只需要将zookeeper集群上edits文件同步到自己的fsimage中就可以。
hadoop框架为这个集群专门写了个分布式应用qjournal(依赖zookeeper实现),实现qjournal的节点称为journalnode。
3.怎么感知active节点是否宕机,并将standby节点快速切换到active状态?
解决方案是专门在namenode节点上启动一个监控进程,时刻监控namenode的状态。对于处在active状态的namenode,如果发现不正常就向zookeeper集群中写入一些数据。对于处在standby状态的namenode,监控进程从zookeeper集群中读数据,从而感知到active节点是否正常。如果发现异常,监控进程负责将standby状态切换到active状态。这个监控进程在hadoop中叫做zkfc(依赖zookeeper实现)。