bzoj 1270: [BeijingWc2008]雷涛的小猫 dp

版权声明:本文为博主原创文章,转载请联系博主。 https://blog.csdn.net/everlasting_20141622/article/details/77334342

题目链接


一看到题就可以想到是动态规划

首先不作任何优化的dp时间复杂度显然是n^3的

dp[i][j]表示第i棵树,高度为j时最多可以吃到多少个柿子

num[i][j]表示第i棵树,高度为j的位置上有几个柿子

显然dp[i][j]=max(dp[i][j+1]+num[i][j] , dp[1~n][j+delta]+num[i][j])

但是n^3是过不了的

我们发现dp[1~n][j+delta]取的是高度为j+delta时的最大值,我们不用每次去扫一遍,一边搞就可以一边求出来

所以复杂度就降到了n^2

就可以过了


代码:

#include<iostream>
#include<cstdio>
#include<deque>
#include<cstring>
#include<algorithm>
#include<vector>

#define ll long long

using namespace std;

int n,m,d;
int num[2020][2020];
int dp[2020][2020];
int Max[2020];
int ans=0;

int main(){
	scanf("%d%d%d",&n,&m,&d);
	for(int i=1; i<=n; i++){
		int x;
		scanf("%d",&x);
		for(int j=0; j<x; j++){
			int y;
			scanf("%d",&y);
			num[i][y]++;
		}
	}
	for(int i=1; i<=n; i++)dp[i][m]=num[i][m],Max[m]=max(Max[m],num[i][m]);
	for(int j=m; j>0; j--){
		for(int i=1; i<=n; i++){
			dp[i][j]=num[i][j];
			if(j+d<=m)dp[i][j]=max(dp[i][j],Max[j+d]+num[i][j]);
			dp[i][j]=max(dp[i][j],dp[i][j+1]+num[i][j]);
			Max[j]=max(Max[j],dp[i][j]);
		}
	}
	for(int i=1; i<=n; i++)ans=max(ans,dp[i][1]);
	printf("%d\n",ans);
	
	return 0;
}


展开阅读全文

没有更多推荐了,返回首页