→题目链接←
一看到题就可以想到是动态规划
首先不作任何优化的dp时间复杂度显然是n^3的
dp[i][j]表示第i棵树,高度为j时最多可以吃到多少个柿子
num[i][j]表示第i棵树,高度为j的位置上有几个柿子
显然dp[i][j]=max(dp[i][j+1]+num[i][j] , dp[1~n][j+delta]+num[i][j])
但是n^3是过不了的
我们发现dp[1~n][j+delta]取的是高度为j+delta时的最大值,我们不用每次去扫一遍,一边搞就可以一边求出来
所以复杂度就降到了n^2
就可以过了
代码:
#include<iostream>
#include<cstdio>
#include<deque>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
using namespace std;
int n,m,d;
int num[2020][2020];
int dp[2020][2020];
int Max[2020];
int ans=0;
int main(){
scanf("%d%d%d",&n,&m,&d);
for(int i=1; i<=n; i++){
int x;
scanf("%d",&x);
for(int j=0; j<x; j++){
int y;
scanf("%d",&y);
num[i][y]++;
}
}
for(int i=1; i<=n; i++)dp[i][m]=num[i][m],Max[m]=max(Max[m],num[i][m]);
for(int j=m; j>0; j--){
for(int i=1; i<=n; i++){
dp[i][j]=num[i][j];
if(j+d<=m)dp[i][j]=max(dp[i][j],Max[j+d]+num[i][j]);
dp[i][j]=max(dp[i][j],dp[i][j+1]+num[i][j]);
Max[j]=max(Max[j],dp[i][j]);
}
}
for(int i=1; i<=n; i++)ans=max(ans,dp[i][1]);
printf("%d\n",ans);
return 0;
}