- 博客(1273)
- 收藏
- 关注
原创 Dify知识库图文混排两种方案详解,从入门到精通,建议收藏!
核心收益•灵活性高:知识库源文件(Markdown)和图片资源(图床)是分离的,未来无论迁移到哪个系统,都非常方便。•方便管理:图片资源集中在图床(如 OSS)管理,查找、替换都很方便。但是缺点•成本:需要额外的图床服务器或对象存储服务费用。•运维:需要处理图床的访问权限、白名单(就像我遇到的 Referer 问题),甚至要多维护一个系统。所以word方案总结下来,就是成本短期相对低一些,不需要单独的图床服务器,图片存储在dify的 Docker 卷中,开箱即用。
2026-01-16 16:15:10
567
原创 继MCP之后,Anthropic又来制定新标准了!
什么是 Skills,就是为大模型提供具体的某种能力,这听上去有点类似与 MCP 的概念,巧了,MCP 也是 Anthropic 提出来的。接着说什么是 Skill,假设我想查询明天的天气,如果只用大模型自己的能力肯定不行,它必须要联网搜索,而联网搜索天气预报这是一个具体且专业的事情,之前用 MCP 可以做到,现在呢,用 Skill 也能做了,这个Skill 的能力就是查天气,可能是一个 Python 方法,就是到某个天气网站搜索天气情况。在 Claude 设置页面,有一些 Claude 内置的技能。
2026-01-16 15:49:13
444
原创 AI大模型实战教程(超详细)从零入门到精通:微舆舆情分析系统全解析!
一句话足矣~本文主要讲解了微舆的整体架构,并通过研读并调试源码,整理了多个Agent各自的执行流程、以及前后端交互。如项目原理、项目部署、源码等存在疑问,欢迎随时私信或留言交流!
2026-01-16 14:56:52
475
原创 RAG(检索增强生成)架构与原理:告别LLM“幻觉”的秘密武器
检索增强生成(Retrieval Augmented Generation,简称RAG)是一种优化大型语言模型(LLM)输出的技术。它通过在生成响应之前,从外部权威知识库中检索相关信息,并将其作为上下文提供给LLM,从而提高LLM回答的准确性、可靠性和时效性,同时有效缓解LLM可能出现的“幻觉”问题。RAG技术通过将外部知识检索与大型语言模型相结合,为解决LLM的“幻觉”问题和知识滞后性提供了有效的途径。它不仅提高了LLM回答的准确性和可靠性,还降低了模型训练和维护的成本。
2026-01-14 11:23:08
629
原创 王炸!一款开源的AI知识库!5分钟零代码搭建
还在为知识管理混乱发愁?学习笔记散落在文件夹、企业文档查找像大海捞针、客户咨询重复回复占用大量时间?今天给大家安利一款 AI 驱动的开源王炸工具 ——PandaWiki,无需编程基础,5分钟就能搭建起智能化知识库,不管是个人学习沉淀还是企业高效协作,都能完美 hold 住!PART 01项目概述:AI + 开源PandaWiki 是一款由 AI 大模型驱动的开源知识库搭建系统,凭借强大的功能和极低的上手门槛,帮助你快速构建智能化的,借助大模型的力量为你提供等能力。
2026-01-14 11:16:32
1103
原创 一文读懂RAG知识库系统:原理、演进与落地全步骤(附实操代码)
RAG全称为"检索增强生成"。2020年,Meta AI研究院的Patrick Lewis团队在其里程碑式的论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中首次系统性地提出了这一框架。它的诞生,直接针对早期大语言模型(如GPT-3)的三个致命短板:易产生"幻觉":可能生成不准确或完全虚构的内容;知识更新滞后:模型训练后知识即固化,难以跟进最新信息;缺乏可追溯性:回答往往不标注来源,难以验证可信度。
2026-01-14 10:58:09
746
原创 全球首个Zero-Error RAG系统:Henon如何让金融AI告别幻觉
Retrieval-Augmented Generation(检索增强生成)技术诞生至今,准确率从60%爬升到85%,看似进步显著,但距离金融行业要求的"零容忍"标准,仍有一道鸿沟。传统RAG系统在处理合同条款、财务报表、法律备忘录等非结构化数据时,幻觉率(Hallucination Rate)依然维持在8-15%区间,这意味着每100条AI生成的金融洞察中,至少有8条存在事实性错误。
2026-01-14 10:51:16
911
原创 全面解析 Agent Engineering 的 10 大工程维度:生产级 Agent 系统的炼成之路。
技术层面的突破让AI智能体(Agent)成为当前绝对的AI热点。但随着Agent应用走向真实业务,也逐渐暴露出其工程瓶颈:不确定性、幻觉、不可观测、性能、安全、成本等多方面存在挑战…这些问题不会因为模型更强而自动消失。“打造一个Agent应用的Demo只需花20%的时间,但把它打磨成产品要花剩下80%的功夫”。这条技术与工程间的鸿沟,正在催生出新的“学科”—。有理由相信:在强劲的需求驱动下,智能体工程的方法论、技术与产品,将成为 2026 年 Agent 的最重要热点。
2026-01-14 10:47:31
614
原创 Transformer架构的分步计算流程
本文详细解析了Transformer架构的核心组件,包括输入数据处理中的分词、词嵌入和位置编码,Encoder中的多头注意力机制与残差连接,以及Decoder的掩码自注意力和跨注意力机制。文章通过分步说明,解释了如何将输入序列转换为矩阵表示,并通过自注意力机制捕捉序列依赖关系,最终通过Softmax输出预测概率,为理解大型语言模型的工作原理提供了全面而深入的视角。上图是Transformer新型神经网络架构。在Transformer出现之前,如如机器翻译等序列建模任务主要依赖循环神经网络(RNN)。
2026-01-09 11:15:15
759
原创 智能体架构相爱相杀?一文了解LangChain和MCP
LangChain与Python MCP集成面临接口抽象冲突、状态管理不一致、性能损耗、版本兼容性、调试困难及安全管控六大问题。应对策略包括开发统一数据转换中间层、采用单向数据流设计、精简参数传输、版本锁定与抽象解耦、全链路trace_id追踪及鉴权信息托管。实践中需平衡LangChain的灵活性与MCP的标准化,根据场景取舍适配层设计。今年以来 mcp实在太火了,有个比喻挺贴切的,当大模型有了 mcp就相当于有了手和脚,真正可以替用户干活了。甚至,有预言 mcp会是未来专属大模型的 app。
2026-01-06 14:23:18
850
原创 基于LangChain构建下一代AI应用
—这些任务,AI聊天工具已经能出色地完成。然而,当我们将目光转向日常工作中更核心、更复杂的业务场景时,可能会遇到这样的困境:你:“ChatGPT,帮我看看游戏服本地测试9000的CPU负载是不是太高了?如果高,就安排它凌晨3点重启一下。
2026-01-06 11:57:20
658
原创 2026年7种大模型最流行的强化学习算法总结
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓CSDN粉丝独家福利这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码点击下方CSDN官方认证链接免费领取【保证100%免费】
2025-12-31 11:47:56
797
原创 Ollama+Qwen 3 +Obsidian打造隐私知识库,一篇就够了,必收藏!
构建个人知识库智能问答体,其实标准的做法那就是 RAG。什么是 RAG?RAG (Retrieval-Augmented Generation,检索增强生成)它给大模型(LLM)配了一个实时查阅的“外挂数据库”或“离线手册”。幻觉(Hallucination):没见过的数据它会一本正经地胡说八道。知识滞后:它的知识停留在训练结束的那一天(比如 2023 或 2024 年)。
2025-12-31 10:56:04
973
原创 RAG检索总是搜不到?别卷Prompt了,手把手教你微调垂直模型!
通过今天这篇文章,我们没有使用任何黑盒工具,而是从数据挖掘原理到代码落地,彻底跑通了 Embedding 微调。你会发现,当你把“硬负例”喂给模型后,它仿佛瞬间开窍了,能精准识别那些曾经让它困惑的“行业黑话”。下一步做什么?虽然代码微调很爽,但在大规模工程化场景下,我们可能需要更快捷的工具。下期文章,我将教大家使用AutoTrainms-swift体验“一行命令”的多卡训练!
2025-12-29 15:30:03
994
原创 RAG高级技术完整教程-迪士尼智能客服全案例【下】
续上一篇的内容第十一章:GraphRAG - 知识图谱增强检索11.1 传统RAG的局限性在前面章节中,我们使用的都是文本块(Chunk)检索的方式。虽然已经很强大,但在某些场景下仍有局限:场景1:多跳推理问题场景2:全局性总结问题11.2 GraphRAG核心思想GraphRAG通过知识图谱来组织信息,建立实体之间的显式关系:GraphRAG的优势:关系显式化:不再依赖文本相似度,而是通过图结构表达关系多跳推理:沿着图的边可以自然地进行多跳查询全局理解。
2025-12-29 15:07:23
831
原创 AI大模型强化学习完整指南:从零基础到精通,一篇掌握PPO到SAPO核心算法!
PPO, GRPO, DAPO, GSPO, SAPO 可以视作一条面向大模型强化学习微调的算法演进链:PPO 作为经典强化学习算法,在旧策略采样、clip 约束小步更新的框架下,让大模型可以稳定做策略梯度;GRPO 通过同一 prompt 下的样本组来估计 empirical advantage,省去了 Value Model 的训练开销;
2025-12-27 11:58:23
724
原创 一文搞懂LangGraph等工作流,太阳底下无新事!
本文系统介绍LangGraph框架构建AI Agent的方法,对比n8n与Dify等低代码平台,通过邮件处理Agent示例展示实现。探讨了可视化工作流在复杂生产环境中的局限性,指出低代码是探索起点而非生产终点,强调复杂场景仍需可编程框架结合严谨工程实践。在大模型(LLM)从“聊天玩具”迈向“生产力引擎”的进程中,如何可靠地指挥 AI 完成多步骤、多工具、带反馈的复杂任务,已成为构建下一代智能系统的核心挑战。
2025-12-27 11:53:41
654
原创 RAG检索增强生成教程(非常详细)从入门到精通,一篇就够了,建议收藏!
Naive RAG 是最基础的检索增强生成架构,采用“索引-检索-生成”的经典流程。
2025-12-25 11:34:14
986
原创 LangGraph 1.0教程(超详细+必藏)从零基础入门到精通,看这一篇就够了!
在之前的系列中,笔者已经系统梳理了 LangChain 1.0 的核心知识点,并通过一个 多模态 RAG 项目带领大家实践了 LangChain 1.0 的关键技术。从本篇开始,笔者将为大家进一步分享的相关知识。与 LangChain 1.0 相比,LangGraph 1.0 的整体架构变动不大,但其定位发生了重要转变:在 1.0 版本之后,LangGraph 不再是 LangChain 的能力延伸,而是成为 LangChain 的能力底座。
2025-12-24 10:34:29
1041
原创 AI大模型思维模式详解:从零基础入门到精通,一篇掌握COT/TOT/GOT/AOT四种高级思维!
文章介绍了大模型的四种高级思维模式:COT(链式思维)、TOT(树状思维)、GOT(图状思维)和AOT(算法模仿思维),旨在克服传统"刚性分类"的局限性。COT适合线性推理任务,TOT通过多路径探索和选择最优解,GOT构建有向图实现灵活合并与迭代,AOT则模仿特定算法进行系统性搜索。这些思维模式能提升大模型处理复杂问题的能力,适用于从创意写作到算法优化等多种场景。
2025-12-24 10:22:28
871
原创 理解AI,看这一篇就够了!
AI的本质特征是泛化能力,使其能够触类旁通、填补知识缝隙并生成内容。然而,AI仅具备"临近泛化"能力,缺乏"远程泛化",因此能模仿写作但难以产生真正创意。这解释了为何AI更可能取代编码类工作而非需要远程泛化的文职工作。未来AI发展方向包括超越Transformer架构和开发专业领域AI,以增强泛化能力和解决特定问题。AI最本质的特点是什么?从哪一个点切入才能更全面、准确、深刻的理解AI?AI最核心的特点就是泛化能力,泛化能力是理解AI的入口。泛化就是触类旁通,举一反三。
2025-12-20 11:06:10
870
原创 一文详解AI编程工具选型指南(附10款+工具推荐)
AI时代,无论是AI产品,还是非AI产品,你都需要会使用AI编程工具。我们正处在AI快速发展的历史性跨越中。未来的核心竞争力,是你定义问题的清晰度和系统设计能力。在AI编程时代,我们不再是执行者,而是设计者。对于产品经理,从想法到实现的距离从未如此之短;对于开发者,从繁琐细节中解脱去攻克架构设计与核心算法的机会从未如此之多。种一棵树最好的时间是十年前,其次是现在。选择一款合适的AI编程工具,行动起来吧,去创造属于你的第一个App,第一个网站。
2025-12-20 10:46:09
720
原创 大模型Agent实战教程:应急管理智能问答系统从零构建到精通,一篇搞定!
本文详细介绍了基于LlamaIndex框架的应急管理安全生产智能问答系统构建方法。系统采用混合查询架构,结合RAG和Text2SQL技术,整合非结构化文档与结构化数据库数据。通过数据预处理、建立索引、智能检索、句子拆分和Agent工作流设计,实现精准的应急管理问答功能。项目解决了多数据源整合、复杂查询处理和结果质量评估等关键问题,为应急管理数字化转型提供了智能化解决方案。《应急管理安全生产智能问答》大赛是一个较典型大模型Agent实战项目,首先看下比赛的具体内容,然后再进行具体的分析和实战!
2025-12-19 11:53:50
932
原创 10分钟讲解 AI Agent(智能体)的底层逻辑,从零基础入门到精通!
在理解 Agent 的原理之前,我们首先需要知道什么是 Agent。这篇文章不会涉及任何晦涩的术语,力图给你最直观的理解。让我们回顾一下 AI 应用的发展历程。现在主流的 AI 技术叫做大模型(LLM)。大模型也叫大语言模型,顾名思义,它擅长语言(聊天),而且只会聊天。这也是为什么初版的 ChatGPT 和 DeepSeek 都只有一个聊天框,它们不过是把大模型的功能简单包装了一下。DeepSeek 只有一个简单的聊天框但是,如果 AI 只会聊天,那它能做的事情就非常局限。
2025-12-19 11:44:31
1831
原创 OpenAI又开源了!仅0.4B,给模型大瘦身
OpenAI研究团队的这项研究,标志着AI可解释性领域的一项重要突破,也印证了理解AI并非遥不可及的目标。研究团队在论文博客中称,这项工作是迈向更宏大目标的早期探索。接下来,他们计划将相关技术扩展至更大规模的模型,同时进一步解释更多模型的行为逻辑。为解决稀疏模型训练效率低下的问题,团队提出了两个后续研究方向:一是从现有密集模型中提取稀疏电路,替代“从头训练稀疏模型”的传统方式;二是研发更高效的可解释性模型训练技术,推动相关技术更易落地生产。
2025-12-18 13:58:29
634
原创 面向生产环境的LLM Prompt 优化:从零基础入门到精通,一篇全搞定!
文章介绍了四种提升LLM应用性能的技术:利用缓存token降低成本和延迟,将用户问题置于提示末尾提升回答质量,使用提示优化器改进提示结构,以及建立定制化基准测试选择最适合的模型。这些方法简单易行,能显著提高LLM应用的成本效益、响应速度和输出质量。大模型(LLM)能够自动化大量任务。自2022年ChatGPT发布以来,市场上涌现出越来越多利用 LLM 的AI产品。然而,我们在使用 LLM 的方式上仍有许多可改进之处。
2025-12-17 15:03:04
748
原创 为什么说多模态是推荐系统破局的关键?从基础到实战,一篇教程全掌握,值得收藏!
从这些工作可以看出,业界在多模态推荐的两大核心挑战上形成了不同的技术路线:基于ID交互关系对齐(快手QARM):适配现有推荐行为分布,但可能导致多模态特征退化;基于语义交互关系对齐(阿里妈妈):保持语义纯粹性,但可能脱离真实推荐场景;联合训练对齐(小红书AlignRec):通过深度融合平衡两者,但训练复杂度较高;量化编码(快手):将语义特征转化为可更新的语义ID,解决多模态表征更新问题;相似度分桶(淘宝):将连续相似度离散化为固定维度向量,简化使用方式;
2025-12-17 10:47:59
853
原创 大模型应用开发实战:从RAG踩坑到智能体优化,一篇搞定智能问答系统!
文章讲述了智能问答系统的开发与优化过程。作者最初采用纯RAG技术按场景建立三个知识库,但效果不佳,特别是在处理结构化与非结构化数据混合场景时。通过转变思路,改为按数据类型(结构化和非结构化)划分知识库,并设计相应的条件查询和相似度查询工具,成功解决了场景判断和查询效果问题,实现了更好的智能问答系统性能。大模型应用开发流程正确,但结果不一定正确。由于大模型技术的复杂性,再加上不同业务场景的特殊需求,导致大模型应用的开发难度很大;但大模型应用开发最难的不是做出来而是要做好。
2025-12-17 10:22:05
584
原创 AI Agent开发完全指南:从零基础到精通,MCP+PTC+Skills+Subagents一文搞定!
本文解析Anthropic三大Agent开发机制:MCP+PTC提供标准化工具访问和程序化调用;Skills以"知识胶囊"形式注入专业技能;Subagents实现"分而治之"的任务拆分。三者分别作为连接层、认知层和组织层协同工作,帮助开发者构建高效、可维护的Agent系统,拓展构建Agent系统的思维方式。Anthropic 这家“AI 后期之秀”擅长在 Agent 工程领域“整活”。(技能)与,并在自身的Claude开发平台落地支持。
2025-12-11 11:38:42
764
原创 Google开源了一个能操作电脑的智能体
谷歌开源的computer-use-preview项目是一个让AI直接操控电脑的Agent框架,采用三层架构设计,支持坐标归一化、截图滑动窗口等技术特点。通过自然语言驱动,AI可自主决定点击、输入等操作,但存在成本高、速度慢等局限性。该项目对构建AI智能体具有重要参考价值。嘿,大家好!这里是一个专注于前沿AI和智能体的频道~前两天,谷歌悄咪咪开源了一个叫的项目。可以让AI直接操控你电脑的Agent框架, 对标broswer_use。
2025-12-11 11:22:45
1294
原创 _大模型如何真正“记住”你:揭秘个性化AI Agent的技术底层框架
本文介绍了一个基于RAG的个性化框架,通过持久化记忆、动态用户画像和多智能体协作实现个性化能力。框架以LLM为中枢,实现中央协调、跨源检索、反思校验等六大模式,采用STM/LTM/用户画像等多层次记忆系统。实验表明该框架在检索准确率和回答正确率上优于标准RAG,尤其长对话任务提升显著。个性化评测应以检索命中、正确性、连贯性为主,解决冷启动与主动性问题是未来重点。RAG能搜资料,却很难认识你。这套框架用持久化记忆 + 动态用户画像 + 多智能体协作,把一次次聊天变成可累积的个性化能力。
2025-12-10 11:53:15
762
原创 AI大模型中的Token是什么?(超详细教程)收藏这篇就够了!
概念说明Token模型处理文本的最小单元(字节或子词)Tokenizer负责将文本拆分为 token 的工具模型的分词词典与算法定义可视化 token 分割的工具用途计费、控制上下文长度、文本分块等。
2025-12-08 21:06:38
1642
原创 AI大模型教程(超详细)从零基础入门到精通,Qwen-VL到Qwen3-VL全系列深度解析!
文章详细介绍了阿里云Qwen系列视觉语言模型的演进历程,从Qwen-VL到Qwen3-VL的架构创新与技术突破。包括基于Transformer的改进架构(RMSNorm、SwishGLU、RoPE),视觉编码器优化(2D-RoPE、NaViT),以及原生分辨率支持、多模态旋转位置编码(M-RoPE)等关键技术,不断提升模型对图像、视频的理解能力和计算效率。Qwen-VLQwenQwen-VLQwen2-VLNaViT 支持原生分辨率其它补充Qwen2.5-VLQwen3-VL整体结构。
2025-12-08 20:54:00
662
原创 注意力机制是什么?(Attention in Transformer)
对于人工智能(AI)中的神经网络结构,大多数人必定都略有耳闻,它来自神经生物学中“神经网络”的高度抽象,输入——传输——输出。不过,在AI模型中,“神经元”并非生物学上的细胞,而是用于存储和处理数据的容器;信息轴也不是电信号在突触上的传递,而是一系列数学函数对目标数值的有向变换。在传统的。
2025-12-06 15:26:14
959
原创 为什么我不再倾向于用Dify等智能体开发平台?
本文分享了Dify平台在AI应用开发中的实战经验。Dify能显著提升开发效率,让小团队能完成大公司的活,并使业务标准化。然而,在处理复杂业务逻辑、性能敏感场景和企业架构融合时存在局限性。作者提出"Dify+自研"的双模架构,并针对不同类型开发者提供差异化建议,强调在合适场景使用Dify的重要性。前言在转眼间,与Dify平台相伴已一年有余,为此写下的实战文章也逼近了80篇。从最初的好奇尝试,到如今的深度依赖,我想以一名老开发者的视角,分享这段旅程中的真实感悟。
2025-12-06 14:51:18
946
原创 AI大模型意图识别实战教程(超详细)从零入门到精通,一篇搞定!
意图识别核心在于 “针对性优化 + 持续迭代”。通过定期分析 bad case,定位未覆盖的表达场景、跨领域混淆点等问题,再通过补充数据、调整阈值、优化 prompt 等方式迭代。
2025-12-05 11:55:44
1071
原创 智能体变笨了是什么原因?怎么优化?
本文详细分析了大模型智能体在多轮对话中出现的性能下降问题,并提出了四大优化方向:上下文长度调整、历史记录管理(控制在6-10轮对话)、提示词优化(明确职责和工具使用)以及工具优化(完善描述和参数验证)。文章强调智能体开发需要反复测试和实验,找到最适合的参数配置,从而提升智能体的质量和稳定性。大模型应用开发,做出来只是开始,做好才是能力。昨天在优化完智能体的记忆功能之后,今天做进一步的测试,然后就发现在多轮对话之后智能体好像变笨了;之前能够回答得很好的问题,现在有点失灵了。
2025-12-05 11:40:00
1657
原创 从RAG+MCP+Agent到企业落地,一篇精通!
文章阐述企业级AI架构三大核心组件:RAG提供企业内外知识访问能力,MCP实现业务工具调用执行能力,Agent整合前两者实现自主任务规划与执行。三者与LLM形成闭环,使AI从"能回答问题"升级为"能完成任务",是企业智能化落地的关键技术路径。如今企业都在“上LLM”,但很多企业落地后发现,只靠大模型:能聊天对话,但不能关联自己的企业数据;只靠 RAG(Retrival-Augmented Generation,检索增强生成):能查数据,但不会执行业务动作;缺少工具调用导致无法对接真实系统;
2025-12-04 15:51:50
754
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅