散列表(中):如何打造一个工业级水平的散列表?

本文是学习算法的笔记,《数据结构与算法之美》,极客时间的课程

通过上一节的学习,我们知道,散列表的查询不能笼统的说是O(1)。它跟散列函数、装载因子、散列冲突等都有关系。如果散列表设计得不好,或者装载因子过高,都可能导致散列冲突发生的概率升高,查询效率下降。

在极端的情况下,有些恶意攻击,还可能通过精心构造的数据,使得所有的数据经过散列之后,都散列到同一个槽里。如果我们使用的是基于链表的冲突解决方法,那这个时候,散列表就退化为链表,查询的时间复杂度就从O(1)急剧退化这O(n)。

今天,我们来学习下,如何设计一个可以应对各种异常情况的工业级散列表,来避免散列冲突的情况下,散列表功能急剧下降,并且能抵抗散列碰撞攻击?

如何设计散列函数

散列函数设计的好坏,决定了散列冲突的概率大小,也直接散列表的性能。那什么才是好的散列函数呢?

首先,散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算的时间,也就间接影响到散列表的性能。其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽时的数据也会比较平均,不会出现某个槽内数据特别多的情况。

实际工作中,我们来需要综合考虑各种因素。这些因素有关键字的长度、特点、分布、还有散列表的大小等。散列函数各式各样,举几个例子。

第一个例子就是上一节学生运动会的例子。我们通过分析参赛编号的特征,把编号中的后两位作为散列值。这种散列函数的设计方法,我们一般叫作“数据分析法”。

第二个例子就上上一节开篇的思考题,如何实现Word拼写检查功能。这里面的散列函数,我们就可以这样设计:将单词中的每个字母的ASCII码值“进位”相加,然后再跟散列表的大小求余、取模,作为散列值。

实际上,散列函数的设计方法还有很多,比如直接寻址法、平方取中法、折叠法、随机数法,这些了解就行了。

装载因子过大了怎么办

对于没有频繁插入和删除的静态数据集合来说,我们很低容易根据的特点、分布等,设计出完美的、极少总被的散列函数,因为毕竟之间都是已知的 。

对于动散列表来说,数据集合是频繁变动的,我们事先无法预估将要加入的数据个数,所以我们也无法事先申请一个足够大的散列表。随着数据慢慢加入,装载因子就会慢慢变大。当大到一定程度之后,散列冲突就会变得不可接受。这个时候,该如何处理呢?

我们或以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新的散列表中。假设每次扩容我们都申请一个原来二八现象表大小两倍的空间。如果原来散列表的装载因子是0.8,那经过扩容之后,新的表的装载因子就下降到原来的一半,成了0.4。

针对散列表的扩容,数据搬移操作要复杂的多,因为散列表的大小变了,数据的存储位置也变了,所以我们需要通过散列函数重新计算每个数据的存储位置。

如下图,在原来的散列中,21这个放下过去原来存储在下标为0的位置,搬移到新的散列表中,存储在下标为7的位置。在这里插入图片描述

支持动态扩容的散列表,插入操作的时间复杂度是多少呢?插入一个数据,最好情况个,不需要扩容,最好时间复杂度是O(1)。最坏情况下,散列表装载因子过高,启动扩容,我们需要重新申请内存空间,重新计算哈希位置,并且搬移,所以时间复杂度是O(n)。均摊情况下,时间复杂度接近最好情况,就是O(1)。

前面讲到,当散列表的装载因子超过某个阈值时,就需要进行扩容。装载因子阈值需要选择得当。如果太大,会导致冲突过多;如果太小,会导致内存浪费严重。

装载因子阈值的调协要权衡时间、空间复杂度。如果内存空间不紧张,对执行效率要求很高,可以降低装载因子的阈值;相反,如果内存空间照张,对执行效率要求又不高,可增加装载因子的值。

如何避免低效地扩容?

刚刚分析到,大部分情况下,动态扩容的散列表插入一个数据都很快,但在特殊情况下,当装载因子已经达到阈值,需要进行扩容,再插入数据。这个时候,插入数据就会变得很慢,甚至会无法接受。

我举一个极端的例子,如果散列表当前的大小是1GB,要想扩容到原来的两位大小,那就需要对1GB的数据重新计算哈希值,并且原来的散列表搬移到新的散列表,听起来就很耗时吧!

如果我们的业务代码直接服务于用户,尽管大部分情况下,插入一个数据的操作都很快,但是,极个别非常慢的插入操作,也会让用户崩溃。这个时候,“一次性”扩容的机制就不合适了。

这样的情况,我们可以将扩容操作插在插入操作的过程上,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新的散列表中。

当有新数据要插入时,我们将新数据插入到新的散列表中,并且从老的散列表中拿出一个数据放入到新的散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的就一点一点全部搬移到新的散列表中了。在这里插入图片描述

这期间的查询操作怎么来做呢?这了兼容,我们先从新散列中查找,如果没有,再去老散列表中查找。

通过这样的均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是O(1)。

如何解决冲突解决方法?

上一节我们讲了两个主要的散列冲突的解决方法,开放寻址法和链表法。这两种冲突解决办法在实际的软件开发中都非常常用。比如Java中LinkHashMap就采用了链表法解决冲突,TreadLocalMap是通过线性探测的开放寻址解决冲突的。

1、开放寻址法

开放寻址法不像链表法,需要拉拉很多链表。散列表中的数据存储在数组中,可以有效地利用CPU缓存加快查询速度。而且,这种方法实现的散列表,序列化起来比较简单。链表法包吃住指针,序列化起来就没那么容易。你可不要小看序列化,很多场合都会用到的。

开放寻址解决冲突的散列表,删除的时候比较麻烦,需要特殊标记已删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,装载因子的上限不能太大。这也导致这种方法比链表法更浪费内存空间。

所以,当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是Java中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。

2、链表法

首先,链表法对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。它对装载因子的容忍度更高。

链表因为要存储指针,所以对于比较小的对象存储,是比较消耗内存的,还有可能会让内存消耗翻倍。而且,因为链表的结点是零散分布在内存中的,不是连续的,所以对CPU缓存是不友好的。当然,如果我们存储的是大对象,那链表中指针的内存消耗在大对象面前就可以忽略了。

实际上,我们对链表表稍加改造,就可以实现一个更加高效的散列表。那就是,我们装饰链表法中的链表改造为其他高效的动态数据结构,比如跳表、红黑权。这样,即便出现散列冲突,极端情况下,的有的数据都散列到同一个桶内,寻最终退化成的散列表的查询时间也不过是O(logn)。这样也就有效愕然了前面讲到的散列碰撞攻击。

在这里插入图片描述
所以,基于链表的散列冲突处理方法比较适合存储大对象,大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如红黑权代替链表。

工业级散列表举例分析

刚刚讲了实现一个工业级散列表需要涉及的一些关键技术,现在,我就拿一个具体的例子,java 中的 HashMap 这样一个工业级的散列表,来具体看下,这些技术是怎么应用的。

1、初始大小

HashMap 默认的初始大小是16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高HashMap的性能。

2、装载因子和动态扩容

最大装载因子默认是0.75,当HashMap 中的元素个数超过0.75*capacity( capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来两倍的大小。

3、散列冲突解决方法

HashMap 底层采用链表法解决冲突。即便负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。

于是,在JDK1.8版本中,为了对HashMap做进一步优化,我们引入红黑权。而当链表长度太长(默认超过8)时,链表就转换为红黑树。我们可以利用红黑树快速增删改查的特点,提高HashMap的性能。当红黑树结点个数少于8个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能的优势并不明显。

4、散列函数

散列函数的设计并不复杂,追求的是简单高效,健在均匀。我把它摘抄出来,你可以看看。

int hash( Object key ){
	int h = key.hashCode();
	return ( h ^ (h >>> 16)) & (capitity - 1); // capicity 表示散列表的大小
}

其中,hashCode()返回的是Java对象的 hash code 。比如 String 类型的对象的 hashCode()就是下面这样:

public int hashCode(){
	int var1 = this.hash;
	if(var1 == 0 && this.value.length >0 ){
		char[] var2 = this.value;
		for(int var3 = 0; var3 < this.value.length; ++var3){
			var = 31 * var1 + var2[var3];
		}
		this.hash = var1;
	}
	return var1;
}

解答开篇

今天的内容讲完了,我现在来分析一下开篇的问题: 如何设计一个工业级的散列函数?如果这是一道面试题或者是摆在你面前的实际开发问题,你会从哪几个方面思考呢?

首先,我会思考,何为一个工业级的散列表?工业级的散列表该具有哪些特性?

结合已经学习过的散列知识,我觉得应该有这样几点要求:

支持快速的查询、插入、删除操作;

内存占用合理,不能浪费过多的内存空间;

性能稳定,极端情况下,散列表的性能也不会退化到无法接受的情况。

**如何实现这样一个散列表呢?**根据前面讲过的知识,我会从这三个方面来考虑设计思路:

设计一个合适的散列函数;

定义装载因子阈值,并且设计动态扩容策略;

选择合适的散列冲突解决方法。

关于散列函数、装载因子、动态扩容策略,还有散列冲突的解决办法,我们前面都讲过了,具体如何选择,还要结合具体的业务场景、具体的业务数据具体分析。不过只要我们朝这三个方向努力,就离设计出工业级的散列表不远了。

内容小结

上一节的内容比较偏理论,今天的内容侧重实战。我主要讲了如何设计一个工业级的散列表,以及如何应对各种异常情况,防止在极端情况下,散列表的性能退化过于严重。我分了三部分来讲解这些内容,分别是:如何设计散列函数,如何根据装载因子动态扩容,以及如何选择散列表冲突解决方法。

关于散列函数的设计,我们要尽可能让散列后的值随机且均匀分布,这样会尽可能地减少散列冲突,即便冲突之后,分配到每个槽内的数据也比较均匀。除此之外,散列函数的设计也不能太复杂,太复杂就会太耗时间,也会影响散列表的性能。

关于散列冲突解决方法的选择,我对比了开放寻址法和链表法两种方法的优劣和适应的场景。大部分情况下,链表法更加普适。而且,我们还可以通过将链表法中的链表改造成其他动态查找数据结构,比如红黑树,来避免散列表时间复杂度退化成O(n),抵御散列碰撞攻击。但是,对于小规模数据、装载因子不高的散列表,比较适合用开放寻址法。

对于动态散列表来说,不管我们如何设计散列函数,选择什么样的散列冲突解决方法。随着数据的不断增加,散列表总会出现装载因子过高的情况。这个时候,我们就需要动态扩容。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试