最短路径:地图软件是如何计算出最优出行路径的?

------ 本文是学习算法的笔记,《数据结构与算法之美》,极客时间的课程 ------

今天,从地图软件的路径规划问题讲起,带你看看常用的最短路径算法(Shortest Path Algorithm)。

像 Google 地图。百度地图、高德地图这样的地图软件,应该会经常使用吧?如果从家开到公司,你只需要输入起始地址、结束地址,地图就会给你规划一条最优路线。这里的最优,有很多种定义,比如最短路线、最少用时路线、最少红灯路线等等。作为一名软件开发工程师,你是否想过,地图软件的最优路线是如何计算出来的吗?底层依赖了什么算法

算法解析

我们刚提到的最优问题包含三个:最短路线、最少用时和最少红灯。我们先解决最简单的,最短路线。

解决软件开发中的实际问题,最重要的一点是建模,也就是将复杂的场景抽象成具体的数据结构。针对这个问题,我们该如何抽象成数据结构呢?

我们之前也提到过,图这咱结构的表达能力很强,显然,把地图抽象成图最合适不过了。我们把每个岔路口看作一个顶点,岔路口与岔路口之间的路看作一条边,路的长度就是边的权重。如果路是单行道,我们就在两个顶点之间画一条有向边;如果路是双行道,我们就在两顶点之间画两条方向不同的边。这样,整个地图就被抽象成一个有向有权图。

具体的代码实现,我放在下面了。于是,我们要求解的问题就转化为,在一个有向有权图中,求两个顶点的最短路径。

    public class Graph{ // 有向权图的邻接表表示
    	private LinkedList<Edge> adj[]; // 邻接表
    	private int v; // 顶点个数
    	
    	public Graph(int v) {
    		this.v = v;
    		this.adj = new LinkedList[v];
    		for (int i = 0; i < v; i++) {
				this.adj[i] = new LinkedList<>();
			}
    	}
    	public void addEdge(int s, int t, int w) { // 添加一条边
    		this.adj[s].add(new Edge(s, t, w));
    	}
    	private class Edge{
    		public int sid; // 边的起始顶点编号
    		public int tid; // 边的终止顶点编号
    		public int w; // 权重
    		public Edge(int sid, int tid, int w ) {
    			this.sid = sid;
    			this.tid = tid;
    			this.w = w;
    		}
    	}
    	
    	private class Vertex{
    		public int id; // 顶点编号ID
    		public int dist; // 从起始顶点到这个顶点的距离
    		public Vertex(int id, int dist) {
    			this.id = id;
    			this.dist = dist;
    		}
    	}
    	
    }

想要解决这个问题,有一个非常经典的算法,最短路径算法,更加准确地说,是单源最短路径算法&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值