------ 本文是学习算法的笔记,《数据结构与算法之美》,极客时间的课程 ------
今天,从地图软件的路径规划问题讲起,带你看看常用的最短路径算法(Shortest Path Algorithm)。
像 Google 地图。百度地图、高德地图这样的地图软件,应该会经常使用吧?如果从家开到公司,你只需要输入起始地址、结束地址,地图就会给你规划一条最优路线。这里的最优,有很多种定义,比如最短路线、最少用时路线、最少红灯路线等等。作为一名软件开发工程师,你是否想过,地图软件的最优路线是如何计算出来的吗?底层依赖了什么算法?
算法解析
我们刚提到的最优问题包含三个:最短路线、最少用时和最少红灯。我们先解决最简单的,最短路线。
解决软件开发中的实际问题,最重要的一点是建模,也就是将复杂的场景抽象成具体的数据结构。针对这个问题,我们该如何抽象成数据结构呢?
我们之前也提到过,图这咱结构的表达能力很强,显然,把地图抽象成图最合适不过了。我们把每个岔路口看作一个顶点,岔路口与岔路口之间的路看作一条边,路的长度就是边的权重。如果路是单行道,我们就在两个顶点之间画一条有向边;如果路是双行道,我们就在两顶点之间画两条方向不同的边。这样,整个地图就被抽象成一个有向有权图。
具体的代码实现,我放在下面了。于是,我们要求解的问题就转化为,在一个有向有权图中,求两个顶点的最短路径。
public class Graph{ // 有向权图的邻接表表示
private LinkedList<Edge> adj[]; // 邻接表
private int v; // 顶点个数
public Graph(int v) {
this.v = v;
this.adj = new LinkedList[v];
for (int i = 0; i < v; i++) {
this.adj[i] = new LinkedList<>();
}
}
public void addEdge(int s, int t, int w) { // 添加一条边
this.adj[s].add(new Edge(s, t, w));
}
private class Edge{
public int sid; // 边的起始顶点编号
public int tid; // 边的终止顶点编号
public int w; // 权重
public Edge(int sid, int tid, int w ) {
this.sid = sid;
this.tid = tid;
this.w = w;
}
}
private class Vertex{
public int id; // 顶点编号ID
public int dist; // 从起始顶点到这个顶点的距离
public Vertex(int id, int dist) {
this.id = id;
this.dist = dist;
}
}
}
想要解决这个问题,有一个非常经典的算法,最短路径算法,更加准确地说,是单源最短路径算法&#