26. 单词拆分
例题139:
给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
单词可以重复取,说明这是一个完全背包问题。
动态规划
- 确定dp数组和下标
dp[j]表示长度为j的字符串可以由字典中的一个或多个单词组成。 - 确定递推公式
dp[j]由上一个dp[j-wordDict[i]]决定,如果上一个是true,并且该单词是字符串s从i-len到i的子串,才是true。
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。 - 初始化
dp[0]=true,由结果反推 - 确定遍历顺序
由于这是一个排列问题,因为applepenapple=apple+pen+apple,而apple+apple+pen或者pen+apple+apple都是不行的。
所以先遍历背包后物品。 - 举例验证
代码如下:
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
boolean[] dp=new boolean[s.length()+1];
dp[0]=true;
for(int i=1;i<=s.length();i++){
for(String sub:wordDict){
int len=sub.length();
if(i>=len && dp[i-len]==true && sub.equals(s.substring(i-len,i))){
dp[i]=true;
}
}
}
return dp[s.length()];
}
}
27. 多重背包理论基础
多重背包
有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
多重背包和01背包是非常像的, 为什么和01背包像呢?
每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。
例如:
背包最大重量为10。
物品为:
重量 | 价值 | 数量 |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
问背包能背的物品最大价值是多少?
把多重背包摊开,且每个物品只能使用一次,就是01背包。
重量 | 价值 | 数量 |
---|---|---|
物品0 | 1 | 15 |
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品1 | 3 | 20 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
物品2 | 4 | 30 |
代码如下: |
public void testMultiPack1(){
// 版本一:改变物品数量为01背包格式
List<Integer> weight = new ArrayList<>(Arrays.asList(1, 3, 4));
List<Integer> value = new ArrayList<>(Arrays.asList(15, 20, 30));
List<Integer> nums = new ArrayList<>(Arrays.asList(2, 3, 2));
int bagWeight = 10;
for (int i = 0; i < nums.size(); i++) {
while (nums.get(i) > 1) { // 把物品展开为i
weight.add(weight.get(i));
value.add(value.get(i));
nums.set(i, nums.get(i) - 1);
}
}
int[] dp = new int[bagWeight + 1];
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight.get(i); j--) { // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight.get(i)] + value.get(i));
}
System.out.println(Arrays.toString(dp));
}
}
方式二:增加遍历个数遍历
public void testMultiPack2(){
// 版本二:改变遍历个数
int[] weight = new int[] {1, 3, 4};
int[] value = new int[] {15, 20, 30};
int[] nums = new int[] {2, 3, 2};
int bagWeight = 10;
int[] dp = new int[bagWeight + 1];
for(int i = 0; i < weight.length; i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
// 以上为01背包,然后加一个遍历个数
for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);
}
System.out.println(Arrays.toString(dp));
}
}
}
28. 背包问题总结
背包问题分类
最重要的是:将问题抽象为背包问题,并记住动规五部曲
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
背包递推公式:
①最大价值:一般用的是Math.max
②最小个数/组合数:一般用的是Math.min,与上一个个数相关
③可能是dp[j-weight[i]]+values[i],也可能是dp[j-weight[i]]+1。判断是个数还是价值。
遍历顺序
01背包
01背包可以分为二维数组和一维数组。
其中二维数组,先物品后背包,或者先背包后物品都可以。
但需要注意的是,背包是倒序遍历,为了防止背包中只有一个物品。
而一维数组只能先物品后背包,是为了保证物品只被加入一次。
完全背包
完全背包的一维数组可以分为两种情况:
①组合问题:先物品后背包
②排列问题:先背包后物品
多重背包
可以转换为01背包,增加次数变量