1.什么是Tokenizer
使用文本的第一步就是将其拆分为单词。单词称为标记(token),将文本拆分为标记的过程称为标记化(tokenization),而标记化用到的模型或工具称为tokenizer。Keras提供了Tokenizer类,用于为深度学习文本文档的预处理。
2.创建Tokenizer实例
from keras.preprocessing.text import Tokenizer
# 实例化一个 Tokenizer
tok = Tokenizer()
3.学习文本字典
##假设文本数据为:
docs = ['good job!',
'hello world',
'great china']
tok.fit_on_texts(docs)# 作用是把文本数据 变换成 计算机能统计的文本数据
# 通常在tokenizer 中,使用的4个内容:
1)word_counts:每个词在所有文档中出现的次数
2)word_docs:每个词出现的文档数量
3)word_index:所有word对应的ID编号,从1开始
4)document_count:处理的文档数
上述数据中:
tok.word_counts
OrderedDict([('good', 1),
('job', 1),
('hello', 1),