Tokenizer 的用法

1.什么是Tokenizer
  使用文本的第一步就是将其拆分为单词。单词称为标记(token),将文本拆分为标记的过程称为标记化(tokenization),而标记化用到的模型或工具称为tokenizer。Keras提供了Tokenizer类,用于为深度学习文本文档的预处理。

2.创建Tokenizer实例
from keras.preprocessing.text import Tokenizer

# 实例化一个 Tokenizer 
tok = Tokenizer()
3.学习文本字典
##假设文本数据为:
docs = ['good job!',
        'hello world',
        'great china']
tok.fit_on_texts(docs)# 作用是把文本数据 变换成 计算机能统计的文本数据
# 通常在tokenizer 中,使用的4个内容:
1)word_counts:每个词在所有文档中出现的次数
2)word_docs:每个词出现的文档数量
3)word_index:所有word对应的ID编号,从1开始
4)document_count:处理的文档数

上述数据中:

tok.word_counts
OrderedDict([('good', 1),
             ('job', 1),
             ('hello', 1),
       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值