TensorFlow指定GPU使用及监控GPU占用情况

本文介绍了如何通过nvidia-smi命令查看、定时更新和设置GPU使用,以及在Python中使用CUDA_VISIBLE_DEVICES环境变量来指定GPU。还讲解了如何配置GPU内存使用和避免资源冲突。
部署运行你感兴趣的模型镜像

查看机器上GPU情况

命令: nvidia-smi

功能:显示机器上gpu的情况

命令: nvidia-smi -l

功能:定时更新显示机器上gpu的情况

命令:watch -n 3 nvidia-smi

功能:设定刷新时间(秒)显示GPU使用情况
在这里插入图片描述

其中左上侧有0、1、2、3的编号,表示GPU的编号,在后面指定GPU时需要使用这个编号。

在终端执行程序时指定GPU

CUDA_VISIBLE_DEVICES=1 python your_file.py

这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见

可用的形式如下:

CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen
CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible
CUDA_VISIBLE_DEVICES=“0,1” Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked

CUDA_VISIBLE_DEVICES="" No GPU will be visible

在Python代码中指定GPU

import os

os.environ[“CUDA_DEVICE_ORDER”] = “PCI_BUS_ID”
os.environ[“CUDA_VISIBLE_DEVICES”] = “0”

设置定量的GPU使用量

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存
session = tf.Session(config=config)

设置最小的GPU使用量

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值