- 博客(61)
- 资源 (6)
- 问答 (1)
- 收藏
- 关注
原创 monocon 环境配置详细步骤
3D 目标检测是monocon 是一个延续CenterNet框架的3D 目标检测网络;在不依赖dcn 模块的情况下有不错的性能。
2024-05-15 14:11:18 381
原创 OpenCV+OpenCV-Contrib源码编译
OpenCV是一款免费开源的计算机视觉算法库,在实际使用的时候,需要移植到不同的平台。在这记录下源码编译的过程。提示:以下是本篇文章正文内容,下面案例可供参考记录下window10 下编译OpenCV+opencv_contrib 的过程,也给有需要的朋友一些经验。
2024-03-23 19:05:08 4288
原创 Labelme
今天使用LabelMe 打开生成的标签文件,一直提示 “打开文件发生错误”。提示:以下是本篇文章正文内容,下面案例可供参考山穷水尽疑无路,柳暗花明又一村。在实际排查问题的时候,会有许多情况。一一排除后,问题迎刃而解。
2024-03-15 11:01:01 847
原创 wav2lib环境配置
万丈高楼平地起,先搭建环境测试下wav2lib效果。wav2lib 是一种基于深度学习的语音驱动面部动画生成算法。该算法的核心思想是将语音信号中的信息映射到面部动画参数中,从而生成逼真的面部动画。Wav2Lip算法主要包括两个阶段:特征提取阶段和动画生成阶段。在特征提取阶段,算法通过对输入的语音信号进行特征提取,得到与语音相关的特征表示。在动画生成阶段,算法利用提取的特征表示,预测面部动画参数,进而生成面部动画。
2024-03-09 16:17:37 1341
原创 Ubuntu下anaconda迁移到另外的目录
好记性不如烂笔头,简单的记录下在ubantu18.04下迁移anaconda的目录记录下迁移的过程,以便自己在后续遇到类似的问题能够快速定位,也能给遇到相同的问题的同行参考。
2024-03-05 18:02:26 991
原创 虚拟机打开之后,无法响应
虚拟机一直用的好好的,突然打开后无法响应,在此记录下解决的过程。1、平时需要养成好的习惯,比如关机前先关闭虚拟机。就不会出现类似的情况了。2、虚拟机也需要占用内存和硬盘资源,这些被其他文件占用时,会出现虚拟机无法打开的情况。
2024-01-25 17:58:14 4614
原创 Failed to extract PIL\_imaging.cp37-win_amd64.pyd: decompression resulted in return code -1!
`这几天遇到使用SecureCTR ,一直无法登录。出现Key exchange failed. No compatible key-exchange method. The server supports these methods: curve2551等错误。排查好久,今天终于解决了,记录下。遇到问题,需要先总结分析,排查出不同的点。这样才能较快较好的解决问题。
2024-01-25 11:02:55 1051
转载 csdn_export_md
在进行模型推理时,无论是加载模型的速度还是对测试图片的推理速度,都能明显感觉到YOLOv5比YOLOv3速度快,尤其是加载模型的速度,因为同样的数据集训练出来的模型YOLOv5更加轻量级,模型大小减小为YOLOv3的将近四分之一。在yolov5目录下的model文件夹下是模型的配置文件,这边提供s、m、l、x版本,逐渐增大(随着架构的增大,训练时间也是逐渐增大),假设采用yolov5s.yaml,只用修改一个参数,把nc改成自己的类别数;我是通过官网源码给的链接翻墙在google云盘上下载的。...
2022-08-11 14:17:39 2415 1
原创 京东 fastreid windows 10 环境配置详细过程
在有些场景中,目标检测无法解决重复识别的问题。为了解决去重,引入Reid 的网络模型。万丈高楼平地起,先搭个环境吧。1.打开github,在搜索框输入fastreid。或者直接点击https://github.com/JDAI-CV/fast-reid进入fast-reid的仓库。2.在Code 下拉列表中选择Download ZIP,下载源码文件。3.将源码 文件解压至合适的地方。1.在开始菜单Anaconda3 中选择Anaconda Prompt(Anaconda3) 。2.使用命令创建fa
2022-06-29 16:24:29 2363 8
原创 Yolov5-Deepsort-Fastreid windows10环境配置详细过程
最近在学习目标追踪,记录下Yolov5-Deepsort-Fastreid 的环境配置过程1、在GitHub搜索框上输入yolov5-Deepsort-Fastreid ,或者直接访问https://github.com/zengwb-lx/Yolov5-Deepsort-Fastreid2.在Code 下拉列表中选择Download ZIP。 下载源码文件3.下载完毕后,解压至合适的位置。1.在开始菜单栏中找到Anacond3里面的Anaconda prompt(Anaconda3) ,打开Ana
2022-06-28 17:39:50 2901 5
原创 yolov6 win10环境配置详细过程
最近美团开源了yolov6 源码,准备体验下yolov6 的效果。记录下环境配置过程。1.在github 上输入yolov6,选择meituan/YOLOV6。或者直接访问https://github.com/meituan/YOLOv6。2.进入到YOLOV6 仓库后,在Code 下拉列表中选择Download ZIP,下载该源码文件。3.将源码文件解压至合适的硬盘。1.在开始菜单栏中找到Anacond3,使用Anaconda3 Prompt (Anaconda3)创建环境。2.在Ancond
2022-06-28 08:41:28 3042 6
原创 Visual Studio 2017 调试全局变量
在Visual Studio 2017 调试代码的时候,出现无法查看全局变量。本文介绍如何查看全局变量的数据。1.今天在VS2017 上调试代码,发现std::queuestd::vector> frame_queue 中push 数据出现异常,在调试界面中想观察frame_queue的数据变化。2.在VS 的界面中一般只能查看局部变量的数据。1.在Debug 模式下,进入调试状态(Ctrl F5)2.在菜单栏中找到【调试】->【监视(W)】->【监视1(1)】。3.进入监视1界面,输入需要监视
2022-06-22 16:33:06 6666
原创 错误LNK2001 无法解析的外部符号 main
前言:在拷贝项目源码的时候,生成代码的时候出现无法解析的外部符号 main。记录下问题1.一般常见的无法解析的外部符号,都是头文件和lib文件的路径错误导致的。无法解析的外部符号main 和头文件及lib文件路径无关。2.考虑是拷贝代码的格式导致的这个问题。1.找到VS的高级保存选项,如果没有需要手动调出来。1.1首先找到工具选项卡->自定义1.2在自定义选项卡中选择命令->菜单栏选择文件->添加命令(A)…1.3在添加命令选项卡中,类别选择文件,命令选择高级保存选项。2.在VS 中使用高
2022-06-02 11:06:01 8664 11
原创 C# 调用C++动态库Debug模式下运行正确,Release下报错
C# 调用C++动态库Debug模式下运行正确,Release下报错前言:在C# 调用C++动态库时候,debug正常运行,release 下出错。一、C# 调用C++ 动态库Release下报错1.报错如下:System.DllNotFoundException:DLL xxx.dll 找不到指定的模块。2.在指定的动态库排查路径是否正确,输入的参数是否正确,引用其他的动态库版本是否正确。采用绝对路径调用动态库,确保路径正确。排除路径错误在debug 下正常运行,排除输入参数的错误。将Re
2022-05-30 16:03:20 3348
原创 The OutputPath property is not set for project ‘xxx.vcxproj‘
The OutputPath property is not set for project ‘xxx.vcxproj’前言:今天调试之前的代码,出现The OutputPath property is not set for project 'xxx.vcxproj’报错,并且头文件及命名空间报错。查看头文件目录均正确,排除路径导致的报错,重点放在The OutputPath property is not set for project 'xxx.vcxproj’的问题上。一、问题描述前几天还能
2022-05-30 09:46:54 2431
原创 VS无法定位程序输入点于动态链接库
VS无法定位程序输入点于动态链接库前言:今天调试vs2017 程序,出现无法定位程序输入点于动态链接库的错误。一、问题排查1.在debug 模式下,程序可以正常运行。2.在release模式下,出现exe无法定位程序输入点于动态链接库的错误。问题猜想1.在debug模式下正常运行,在release 下报错。很有可能是release 依赖的动态库不对。验证猜想1.将release 下的依赖动态库重新拷贝release 版本,程序运行正常。总结1.后续出现类似的问题,需要将依赖的动态库筛查一
2022-05-20 17:35:30 6657
原创 RuntimeError: mat1 and mat2 shapes cannot be multiplied (1024x1 and 1024x3)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (1024x1 and 1024x3)前言:在学习pytorch 搭建神经网络的时候,测试网络发现出现RuntimeError: mat1 and mat2 shapes cannot be multiplied (1024x1 and 1024x3)的错误,记录下。一、报错如下Traceback (most recent call last): File "mobilenet_v1.p
2022-04-25 16:29:35 36842 4
原创 轻量级网络之mobilenet_v1 pytorch实现
轻量级网络之mobilenet_v1 pytorch实现前言:前面讲解了mobilenet 实现在移动端或者嵌入式中的轻量级网络,本文使用pytorch 搭建mobilenet_v1网络。一、Mobilenet_v1 网络结构1.Mobilenet_v1 网络结构如图所示由此我们可以得出mobilenet_v1的网络结构由标准卷积、深度可分离卷积、平均池化、全连接层组成。2.标准卷积模块由Conv + BN + Reluclass ConvBNReLU(nn.Sequential):
2022-04-25 14:04:57 5592 5
原创 AttributeError: ‘NoneType‘ object has no attribute ‘fill_‘
AttributeError: ‘NoneType’ object has no attribute ‘fill_’前言:在使用pytorch搭建网络的过程中,出现AttributeError: ‘NoneType’ object has no attribute 'fill_'的错误,记录下一、搭建网络后,开始测试网络输出model = mobilenet_v1()input = nn.torch.randn(1,3,224,224)out = model(input)print(out.sh
2022-04-25 10:46:28 2928 1
原创 轻量级网络之mobilenet_v1详解
轻量级网络之mobilenet_v1详解前言:学习网络结构有一段时间了,记录下mobilenet_v1的结构论文地址:https://arxiv.org/pdf/1704.04861.pdf一、mobilenet_v1 研究背景1.随着Alexnet 获得2012年的 ILSVRC 2012的挑战冠军,通常的趋势是通过搭建更深的和更复杂的网络来获得更高的准确率。这些进步虽然可以提高精度,但在推理速度和模型大小却不一定是高效的。2.考虑在有限算力的平台上需要实时获得识别任务, 提出在移动端或者嵌入式
2022-04-21 14:02:15 7758
原创 PaddleDetection 环境配置详细过程
PaddleDetection 环境配置详细过程前言:学习目标检测有一段时间了,现在准备学习下百度的pp-yolo-e 这个轻量级模型。一、github 下载源码1.进入paddle的GitHub官网。https://github.com/PaddlePaddle/PaddleDetection.com2.下载paddledetection,点击【Download ZIP】下载到指定位置。二、paddle环境配置1.在开始菜单中找到Anaconda3,打开Anaconda Prompt 命
2022-04-19 10:09:15 3100
原创 BrokenPipeError: [Errno 32] Broken pipe
BrokenPipeError: [Errno 32] Broken pipe前言:今天在训练yolov5.6.1版本,突然出现BrokenPipeError: [Errno 32] Broken pipe错误。一、 运行命令python train.py 出现如下错误Traceback (most recent call last): File "train.py", line 643, in <module> main(opt) File "train.py", lin
2022-04-07 16:59:59 17034 7
转载 YOLOv5的置信度阀值与iou阀值及P R详解
conf_thresConfidence Threshold,置信度阈值。 只显示预测概率超过conf_thres的预测结果。 想让YOLO只标记可能性高的地方,就把这个参数提高。iou_thresIntersect over Union Threshold,交并比阈值。IOU值:预测框大小∩真实框大小 / 预测框大小∪真实框大小。(预测框与真实框的交集与并集的取值。)iou_thres在detect.py中:越大,则容易将对于同一个物品的不同预测结果 当成 对多个物品的多个预测结果,导
2022-03-31 14:40:31 39218 1
原创 结构体数据越界
结构体数据越界前言:今天在调试代码的时候发下结构体下某个数据莫名其妙的被改变了,赋值为0,突然变成1530。一、添加打印消息在代码中加入输出该组数据的实际值,打印消息printf("result: %s",m_data);运行代码进行分析按F5 进行调试,查看输出端的内容。找到值变了的那一步。m_data: 0;m_data: 0;m_data: 0;m_data: 0;m_data: 0;m_data: 0;m_data: 0;m_data: 0;m_data: 0;m_
2022-03-31 10:45:05 480
原创 Visual Studio 低版本打开高版本创建的项目(以VS2017打开VS2019为例)
Visual Studio 低版本打开高版本创建的项目(以VS2017打开VS2019为例)前言:在另外一台的电脑上拷贝了一份项目源码,发现项目是用VS2019 创建的,而自己电脑上安装的是VS2017。于是出现了低版本的VS2017无法打开VS2019的项目,出现一下错误。错误一: 未找到框架" .NETFramework,Version=v5.0" 的引用程序集。解决方法:1.找到对应的程序 test_wpf,【项目】->【test_wpf属性】(需要选中test_wpf项目)。发现目标
2022-03-22 09:11:46 6203
原创 yolact windows10 环境配置详细过程
yolact windows10 环境配置详细过程一、下载yolact1.使用git 命令下载git clone https://github.com/dbolya/yolact.git //下载yolactcd yolact //进入yolact2.进入github 手动下载yolact,点击【Code】选择Download ZIP,即可下载。二、创建环境1.在【开始】菜单栏打开Anaconda Prompt ,进入base环境2.创建yolact 环境conda creat
2021-12-30 10:24:48 3304 14
原创 win10 + ubantu双系统 彻底删除Ubantu
win10 + ubantu双系统 彻底删除Ubantu一、进入windows系统1.在桌面上找到【此电脑】,右击弹出菜单选择【管理(G)】2.选择【磁盘管理】,删除ubantu分配的磁盘。3.选择uabntu分配的磁盘(swap分区,EFI分区,/home分区和/分区),右击弹出菜单中选择【删除卷】,删除即可。4.删除其他卷之后,发现EFI 盘无法删除。二、删除EFI 分区1.使用win+r 打开运行界面,输入cmd,进入cmd界面2.输入DISKPART,使用list disk
2021-12-16 22:27:46 1858
原创 LabelImg 无法保存修改后的xml文件
LabelImg 无法保存修改后xml 文件今天标注数据,忽然发现无法保存修改之后的xml 文件,保存之后重新打开还是修改之前的xml经过一番摸索,发现LabelImg 保存的xml 在图片文件夹 A下,而之前标注好的xml 文件在另外一个文件夹B,导致每次保存修改后的xml文件在图片文件A,LabelImg 所读取的是另外一个文件夹B ,从而导致一直无法保存解决办法:将图片文件和xml标注文件放置到同一个文件夹内,修改后即可保存。...
2021-12-10 10:45:50 3079
原创 OSError: [Errno 22] Invalid argument: ‘M:/ImgSegements/HighResolution\\JPEGImages4\\S1480009_0|1024_
OSError: [Errno 22] Invalid argument:‘M:/ImgSegements/HighResolution\JPEGImages4\S1480009_0|1024_0_1280_1280_0_6016_3384.xml’Traceback (most recent call last): File "segment.py", line 300, in <module> slice_im(List_imgs, outdir, raw_images_di
2021-12-09 15:38:11 179
原创 window10 pytorch编译DCNv2 遇到的错误 (yolact ++)
window10 pytorch编译DCNv2 遇到的错误错误1:UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend.解决方案:pip install ninja错误2:error: identifier "THCState_getCurrentStream
2021-11-24 11:40:35 9933 3
原创 Tensorflow Object_Detection Mask Rcnn训练 报错Windows fatal exception: access violation Current thread 0
Tensorflow Object_Detection Mask Rcnn训练 报错Windows fatal exception: access violation Current thread 01.训练mask rcnn 时出现错误Tensorflow Object_Detection Mask Rcnn训练 报错Windows fatal exception: access violation Current thread 02.查看之前顺利跑通的配置文件,发现修改了数据增强这块。data
2021-11-22 17:39:51 1440
转载 数据标注软件labelme 详细讲解
Labelme 版本:3.11.2文章目录Labelme 是什么?Labelme 能干啥?Labelme 安装要求Labelme 安装方法Labelme 使用教程5.1 分类标注5.2 目标检测标注5.3 场景分割标注5.4 实例分割标注5.5 视频标注5.6 其它形式的标注5.7 命令行工具Labelme 常见问题TestingDeveloping将 labelme 打包成可执行文件致谢Labelme 是什么?Labelme 是一个图形界面的图像标注软件。其的设计
2021-11-19 14:43:10 1818 1
转载 STL erase函数的使用陷阱总结大全
阅读目录(Content)1.list,set,map容器1.1 正确写法11.2 正确写法21.3 错误写法11.4 错误写法21.5 分析2. vector,deque容器2.1 正确写法2.2 注意3.迭代器失效的情况3.1 vector3.2 deque3.3 list3.4 slist3.5 stack3.6 queue3.7 priority_queue3.8 set3.9 multiset3.10 hash_set3.11 hash_multiset
2021-11-18 09:12:13 337
原创 RuntimeError: Unable to find a valid cuDNN algorithm to run convolution
RuntimeError: Unable to find a valid cuDNN algorithm to run convolution前言解决办法前言今天使用yolov5.6版本训练模型,修改batchsize为32。出现如下错误:Starting training for 100 epochs... Epoch gpu_mem box obj cls labels img_size 0%|
2021-11-02 14:12:43 1752
原创 LabelImg标注软件无法在windows 上运行
LabelImg标注软件无法在windows 上运行一、下载LabelImg 软件LabelImg v1.8.1下载链接二、解压到本地,运行LabelImg.exe,软件闪退。三、按照官网搭配环境,编译labelImg.exe。1.官网在windows下运行2.在python 官网上下载python3.x,在这里选择python3.7.9版本,将python的路径添加到系统环境变量。3.W+R 打开控制面板,输入cmd,回车进入cmd界面4.输入pip install PyQt5,安装
2021-10-28 14:59:22 7156 2
原创 在Github上提交自己的代码到别人的仓库
在Github上提交自己的代码到别人的仓库一、创建自己的github账号。二、进入对方的github仓库,点击Fork,把对方的资源放置到自己的仓库里面1.点击对方资源的右上角的Fork。2.自动跳转到自己的仓库,如图所示。三、在本地创建仓库,并克隆资源后修改1.使用W+R快捷键,进入cmd。2.选择合适的本地路径,作为git的目录。这里演示使用J: 盘作为git的目录3.输入git init,创建本地仓库。在J:盘中可以看见.git文件夹。J:\>git init4.
2021-09-28 18:16:57 13208 3
原创 安装Microsoft nni环境
安装Microsoft nni环境1.打开Anaconda Prompt ,创建nni 环境,激活环境。conda create -n nni python=3.7 //创建环境名称为nni,python 版本为3.7输入y,回车conda activate nni //激活环境nni2.搭建nni环境:找到nni/dependencies/develop.txtpip install cython wheel scikit-learnpip install -r nni/depend
2021-09-14 16:58:11 1031 1
原创 基础算法-二分法
基础算法-二分法给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。示例 1:输入: nums = [-1,0,3,5,9,12], target = 9输出: 4解释: 9 出现在 nums 中并且下标为 4示例 2:输入: nums = [-1,0,3,5,9,12], target = 2输出: -1解释: 2 不存在 nums 中因此返回 -1提示:你可以假设
2021-09-13 10:25:01 203
原创 yolov5 + libtorch1.9 +vs2017 模型部署C++
yolov5 + libtorch1.9 +vs2017 模型部署C++一、模型转换:在C++中调用pytorch模型需要转换成torchscript。import torchimport torchvision# An instance of your model.model = torchvision.models.resnet18()# An example input you would normally provide to your model's forward() metho
2021-09-07 16:27:22 4271 10
原创 yolov5快速安装环境
yolov5快速安装环境1.打开Anaconda Prompt,进入base 环境2.在base环境下,创建yolov5的环境。(base) C:\Users\Administrator>conda create -n yolov550 python=3.7 //yolov550为自己命名的环境名称,python=3.7 指定python的版本为3.7(base) C:\Users\Administrator>conda activate yolov550 //激活yolov550
2021-09-07 15:46:34 1014 1
ssd_mobilenet_v2_mnasfpn_shared_box_predictor_320x320_coco_sync.tar.gz
2021-06-09
ssd_mobilenet_v3_large_coco_2020_01_14
2020-12-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人