DFS之岛屿问题总结

岛屿的数量

class Solution {                                    
public:
    vector<vector<char>> grid;
    int x[4] = {-1, 0, 1, 0}, y[4] = {0, 1, 0, -1};
    int numIslands(vector<vector<char>>& grid_) {
    grid = grid_;
    int m = grid.size(), n = grid[0].size();
    if(!m) return 0;
    int cnt = 0;
    for(int i = 0; i < m; i++){
        for(int j = 0; j < n; j++){
        if (grid[i][j]=='1'){
            dfs(i, j);
            cnt++;
            }
        }
    }
    return cnt;
    }
    void dfs(int i, int j, int &minx, int &miny, int &maxx, int &maxy){
       
        grid[i][j]=0;
        for (int k = 0; k < 4; k++){
            int a = i + x[k], b = j + y[k];
            if (a>=0&&a<grid.size()&&b>=0&&b<grid[0].size()&&grid[a][b]=='1'){
                dfs(a, b);
            
            }
                
        }
    }
};

每个岛屿的最小boundingbox

class Solution {                                    
public:
    vector<vector<char>> grid;
    int x[4] = {-1, 0, 1, 0}, y[4] = {0, 1, 0, -1};
    int numIslands(vector<vector<char>>& grid_) {
    grid = grid_;
    int m = grid.size(), n = grid[0].size();
    if(!m) return 0;
    int cnt = 0;
    for(int i = 0; i < m; i++){
        for(int j = 0; j < n; j++){
        if (grid[i][j]=='1'){
            int minx = i, miny = j;
            int maxx = i, maxy = j;
            dfs(i, j, minx, miny, maxx, maxy);
            cout << minx <<" "<< miny <<" "<< maxx <<" "<< maxy <<endl;
            cnt++;
            }
        }
    }
    return cnt;
    }
    void dfs(int i, int j, int &minx, int &miny, int &maxx, int &maxy){
       
        grid[i][j]=0;
        for (int k = 0; k < 4; k++){
            int a = i + x[k], b = j + y[k];
            if (a>=0&&a<grid.size()&&b>=0&&b<grid[0].size()&&grid[a][b]=='1'){
                minx = min(minx, a);
                maxy = max(maxy, b);
                maxx = max(maxx, a); 
                miny = min(miny, b);
                dfs(a, b, minx, miny, maxx, maxy);
            
            }
                
        }
    }
};

floodfill

一、实现4向flood fill算法。给定:

  1. 一幅单通道灰度图像img;
  2. 一个起始点坐标x,y;
  3. 一个目标颜色color;
    从(x,y)位置起,将连通区域内所有像素颜色赋值为color。连通区域定义:上下相邻,或左右相邻,且颜色相同的像素,属于同一连通区域。
int x[x] = {-1, 0, 1, 0}, y[4] = {0, 1, 0, -1};

int floodfill(int x, int y, vector<vector<int>> img){
            dfs(x, y, img);
}

void dfs(int i, int j, vector<vector<int>>img){
    img[i][j] = color;
    for(int k = 0; k < 4; k++){
        int a = i+x[k], b = j+y[k];
        if(a>=0&&a<img.size()&&b>=0&&b<=img[0].size()&&img[a][b]=img[i][j]){
            dfs(int i, int j, vector<vector<int> > img);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知行SUN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值