- 博客(48)
- 资源 (2)
- 收藏
- 关注
原创 使用 Langgraph 构建本地 RAG 知识库:从文档加载到检索
本文介绍了如何使用LangChain构建本地RAG知识库。RAG包含索引和检索两个阶段:索引阶段通过加载文档、拆分文本、向量化处理并存储到向量数据库;检索阶段根据查询检索相关文档,生成回答。文章提供了完整的Python代码示例,涵盖文档加载(支持PDF/CSV等格式)、文本拆分策略(正则或递归拆分)、向量化处理(推荐DashScope)以及FAISS向量数据库的存储与检索。关键点包括不同文档加载器的选择、文本拆分参数优化、多种向量数据库对比,以及相似度检索、MMR检索等高级技巧,为构建本地知识库提供了实用指
2026-01-27 10:37:54
540
原创 langgraph搭建智能体各个组件使用与总结
本文总结了LangGraph技术学习要点,涵盖环境配置、核心概念和实践应用。首先介绍了基础依赖安装和模型配置方法,重点讲解了Agent智能体的创建与使用,包括基础Agent和带Hook的Agent实现。其次详细说明了工具(Tools)、状态(State)、节点(Node)和边(Edge)等核心概念。在记忆机制方面,阐述了Checkpointer短期记忆、消息处理策略和Store长期记忆三种管理方式。最后简要介绍了MCP集成方案及其两种传输方式(SSE和stdio)。全文通过代码示例展示了LangGraph的
2026-01-22 11:31:16
700
原创 【langchain——对话链+记忆模块】通过代码构造可多轮会话,自动调整记忆长度的基于知识库检索的购物推荐智能体搭建
摘要:本文介绍了LangChain智能体多轮会话中的记忆管理方案,对比分析了三种记忆模块(BufferMemory、BufferWindowMemory、SummaryBufferMemory)的特点和使用方法。同时详细说明两种对话链(ConversationChain和RetrievalQAWithSourcesChain)的应用场景,并给出电商推荐场景下实现多轮对话的完整代码示例,通过商品推荐案例展示了记忆模块如何维持对话连贯性,实现"换一批"等连续交互功能。文中还包含四种chain
2026-01-06 11:23:12
397
原创 【langchain框架——检索链】利用检索链创建自己的购物知识库并完成智能体的商品推荐
检索链在RAG中的应用 本文介绍了检索增强生成(RAG)中的核心组件检索链,并展示了其在电商商品推荐中的实际应用。主要内容包括: 检索链分类:介绍了四种常见检索链类型及其特点,包括基础检索问答链、带来源追溯的链、对话式检索链和可配置链。 实现流程: 商品PDF文档加载与分块处理 创建FAISS向量数据库存储商品信息 实现两种混合检索器(简单融合和加权融合) 构建LLM工作流,先提取用户需求再推荐商品 技术要点:展示了使用LangChain框架处理文档、创建向量库、实现混合检索以及构建推荐逻辑的关键代码片段。
2025-12-26 16:44:39
425
原创 【langchain框架—组合链】利用组合链完成客服优先等级的划分
本文展示了一个基于LangChain的客服工单处理系统流水线实现。该系统使用组合链(SequentialChain)将多个LLMChain按顺序连接,实现工单的自动化处理流程:分类→紧急程度划分→问题摘要提取。系统预设了5个分类标签和3个紧急级别,能够有效处理订单问题、产品质量问题、技术问题等不同类型的客户咨询。代码示例演示了5个典型工单的处理过程,包括分类结果、紧急程度评估和问题摘要提取。这种流水线式处理方法显著提高了客服工单的处理效率和一致性,为自动化客户服务提供了实用解决方案。
2025-12-24 11:25:11
262
原创 【LangChain框架—路由链】使用国内模型langchain连接以及langchain的多专家分配路由链的搭建
本文介绍了LangChain框架及其核心组件,包括开发、生产化和部署三个阶段的关键措施。框架包含模型、提示词、数据检索等6大核心组件,以及多个开源库。文章展示了如何导入国产千问模型,并通过代码示例演示了系统提示词设置和流式输出。重点讲解了路由链实现多专家多意图的方法,使用MultiPromptChain构建不同领域的问答系统,最后附上效果展示图。全文涵盖LangChain的核心概念和实践应用,为开发者提供了构建AI应用的实用指南。
2025-12-24 09:16:46
380
原创 【全网首发!】通过Memos自制记忆库解决工作流多次进行单次调用输出单调性的问题
MemOS是一个开源自托管的知识管理工具,兼具备忘录和社交功能。本文介绍了部署MemOS以解决智能体工作流中的历史数据存储问题:1)减少服务器负载;2)避免长效记忆库的高额token费用;3)现有插件缺乏删除功能导致性能下降。部署步骤包括Docker安装、端口配置和API测试(增删查操作)。最终通过公网IP实现智能体的个性化交互,使每次工作流调用能基于历史记录生成不同结果。该方案有效解决了智能体异步处理的记忆功能缺失问题。
2025-12-10 10:05:42
317
原创 让大模型输出更加规范化——指定插件
本文提出了一种智能闹钟设置插件方案,通过代码解析处理自然语言中的时间表达,解决大模型在定时任务中的准确性不足问题。系统主要包含以下功能: 支持中文时间表达解析(如"三点半"、"十点一刻") 处理相对时间描述(如"半小时后"、"两小时后") 识别日期表达(如"明天"、"后天"、"大后天") 内置时间段自动划分(凌晨、早上、上午、中午等) 该方案通过将模糊的自然语言时间描述
2025-07-17 14:39:18
393
原创 【多专家模型+医学知识图谱RAG】大模型读取体检报告并解析病因和健康指导
体检指标知识图谱构建方案 本文介绍了一个针对非医学人群的体检指标解析系统。系统通过Python程序自动处理医学电子书(ePub格式),提取体检结果解读章节内容,使用GPT模型将专业医学指标转化为易懂的字典格式数据(包含正常范围、异常症状等信息)。然后利用Neo4j图数据库构建可视化知识图谱,将各体检项目与其医学含义、异常症状等建立关联关系,最终生成便于普通人理解的体检指标知识网络。系统实现了从原始医学文档到可视化知识图谱的全自动转换流程。
2025-06-11 14:10:54
541
原创 【全网首发】知识库的批量导入以及更新
本文探讨了数据库与知识库在搜索方式上的差异,指出数据库使用SQL语句搜索的局限性,而知识库采用RAG技术能更灵活地匹配用户需求。为了解决知识库不支持Excel上传的问题,作者开发了一个Python脚本,将Excel表格转换为Word文档,并通过API接口实现知识库的自动更新。文章详细介绍了从Excel到Word的转换过程,以及如何通过接口创建、检索、删除和重新写入知识库文档的步骤。最终,作者克服了对技术文档的恐惧,成功实现了知识库的自动化管理。
2025-05-20 11:11:21
492
原创 【全网首发】解决coze工作流批量上传excel数据文档数据重复的问题
注意:目前方法将基于前一章批量数据库导入的修改!!!!请先阅读上篇文章的操作。
2025-05-16 11:43:19
1024
原创 coze从入门到入土:excel表格批量导入数据库工作流制作【解决节点使用上限】 + API接口上传文件和用户需求
本文介绍了一种通过插件和工作流实现数据库实时更新的方法。首先,插件接收Excel文件地址、数据库名和表头信息,确保表头一致。由于SQL批量上传存在处理长度限制,作者采用每20条数据分批上传的方式,解决了工作流处理次数的限制。代码展示了如何构建SQL语句并分批上传数据。然而,发布模型后发现智能体无法访问数据库,原因是API和平台数据库独立。为此,作者通过API调用工作流重新上传数据,并提供了文件上传和API调用的代码示例,确保数据在多模态场景下正确更新。
2025-05-15 15:01:57
1789
原创 【大模型理解消化的搅碎机】基于6000种商品CSV表格的知识图谱构建
Graph RAG 即图增强检索生成(Graph - Augmented Retrieval Augmented Generation),它是在检索增强生成(RAG)基础上结合图数据库的一种技术。
2025-04-25 16:38:40
395
原创 yolov11在自己的数据集上微调+长效记忆模块【同时完成识别,分割,追踪】
在这里我是用的工具是ISAT-with-segment-anything,这个工具在github上有,是属于半自动标注工具,说是可以用sam训练权重加上点提示完成图片标注,听起来是不是有点事半功倍的意思?因为本人工作需要,需要识别标枪,起跑器,跨栏等刁钻东西,哎~。因此需要训练分割网络,但是分割网络目前比较好的是sam等系列的网络,然而,上述网络存在弊端,就是仅仅有分割掩码,但缺乏对掩码的类别标签,因此无法从若干体育器材中筛选出来,因此,我们需要对yolov11网络进行训练(在自己的数据集上)
2025-03-06 14:55:59
1161
2
原创 切向畸变系数与径向畸变系数整合得到棋盘格标定的1*5的畸变系数
径向畸变是因为相机厂家出产相机过程中工艺问题导致相机在成像过程中越远离光轴畸变程度越大的即便问题。
2024-10-23 09:47:05
393
原创 cv2.error: OpenCV(4.10.0) :-1: error: (-5:Bad argument) in function ‘inRange‘
File “File "这个错误困扰了很久。
2024-10-22 16:40:20
2103
原创 用python获取blender中动态物体坐标轴(坐标轴跟随物体角度变化而变化)
为什么需要绘制动态物体的三维坐标轴。其一在于可以很好地知道关节的扭矩摆动等生物力学信息。因此,我们在研究这一功能上是十分必要的。下面是博主本人呕心沥血的经验(为了实现这一功能)
2024-10-22 14:11:28
581
原创 用python实现blender刚体绘制以及三维mark点动态坐标获取可视化
首先,必须要知道的是blender里面每个object可以绑定一个父类,动态mark点的父类是人体关键点骨骼上的三维坐标(osim里面bodyset部分),而动态mark点与之对应的静态mark点是在osim文件下markset的部分,首先我们需要在model.py里面让mark点与骨骼三维坐标联动,这样我们就可以实现动态的mark效果。
2024-10-18 10:52:31
776
原创 用python实现基于osim的三维骨架重投影二维视频流
目前没有开源的二维骨骼模型嵌套在二维图片上的案例,因此特意整理了耗费一周写出的代码去总结整个实现流程相机标定文件toml的python调用上传motion的.csv文件的python调用上传mark点.trc文件用python实现python 对重建后的三维骨架模型根据上传上去的相机标定文件进行重投影、透明化、mask叠加在原始视频每一帧图像上最后的结果展示(其中一个相机的样图)
2024-09-29 13:38:33
745
原创 用python实现基于reID深度学习网络技术完成相机标定
在不同图片里追踪同一个人,鉴于这种便利的条件,可否以关键点作为标定点,多相机拍摄的图片信息作为输入,通过获取不同图像中相同label,并在label中绘制骨骼点作为标定点,以此达到获取相机模型的目的。
2024-09-13 15:44:13
462
原创 用python实现NLT(DLT + LM非线性强化)标定前后误差对比
【代码】用python实现NLT(DLT + LM非线性强化)标定前后误差对比。
2024-09-05 15:27:30
460
原创 分装好的api接口无法计算路程问题
面对底盘ROS分装好的api接口设备无法触碰到底层ROS话题问题,同时苦于在未导航前提前估计路程大小的我,在网上没有办法的情况下又苦恼了好几天,直到得到一个师兄的点拨,编写了如下的代码算是真正解决了不用ROS低层topic话题便可以获得估计的路程~ 【PS:这里需要换成自己机器人的api接口】3. 获取图像中所有白点,即可行点,并保存。
2023-04-11 22:17:32
266
原创 Windows10安装scoop
Scoop是 Windows 的命令行包管理器,可以更轻松地安装和使用常用程序和工具。Scoop 包括对各种 Windows 软件以及 Unix 世界中最受欢迎的软件的支持。与 Unix 系统的包管理器模型相比,它解决了 Windows 软件生态系统的许多常见痛点。使用 Scoop 时,您可以使用一个命令下载并安装支持的程序:“scoop install program”,其中 program 是程序的名称。更新、卸载和查找软件同样简单,避免冗长地访问网站和 Windows 设置应用程序。
2023-04-05 17:18:24
498
原创 socket远程No route to host问题解决
如果上面的方法还是不行,那么请检查是否安装了ssh, openssh, openssh-server,openssh-client, 以及sshd服务是否打开!网上查了半天没解决说是关闭防火墙啥的,但是我关了呀 呜呜呜呜。后来我发现ufw和firewalld不是一个东西。一定要注意关闭ufw是不行的!
2022-12-20 15:42:54
709
原创 第三磅 ——深度学习损失函数大全
一 十七个损失函数(前三个貌似常用些,后面的没怎么见过)1)L1loss功能:计算输出与输入之差的绝对值,可返回一个标量或者一个tensor类型;class torch.nn.L1Loss(size_average=None,reduce=None)# reduce:填写bool型,当为True时:返回值为标量;反之,返回tensor类型#当size_average=True时,返回loss的平均值;当size_average=False,返回各样本的Loss之和;2)MSELoss (
2021-11-13 14:52:29
1309
原创 第二磅之迁移学习+finetune
迁移学习——finetune一 权值初始化1 保存模型参数(若拥有模型参数跳至步骤2)假设已经创建了一个网络net=Net()通过以下方式保存:torch.save(net.state_dict(),'net_params.pkl') #保存网络参数,并通过.pkl的方式存放2 加载模型pretrained_dict = torch.load('net_params.pkl') #载入刚才保存的参数3 初始化#创建新模型,并取到的权值,对应的放到新模型中去net=Net
2021-11-12 20:04:40
1264
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅