Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT.
实现两个数相除,但不能使用除号和取模符号,很明显,本题基本上是用加、减、移位运算来实现除法运算。用减法就可以实现除法运算,一直减去被除数,最后得到除法运算的值,但这种方法会TimeOut,因为当除数为Integer.MAX_VALUE,被除数为1时,会计算Integer.MAX_VALUE次,效率很低。
另一种效率较高的方法:
a/b = a0*2^0 + a1*2^1 + ... + ai*2^i + an*2^n;其中ai为0或1,通过这种方法,只要确定最大的a_max = max(a0, a1, ... ai)的i值(如程序中的index值),再将a_max前面ai不为0的多项式相加,即为a/b的值。
数值运算一定要注意边界条件,不外乎就整数的上下界拿出来单独考虑,分类并不多。
程序如下:
class Solution {
public int divide(int dividend, int divisor) {
if(divisor == 0){
return Integer.MAX_VALUE;
}
if (dividend == Integer.MIN_VALUE){
if (divisor == -1){
return Integer.MAX_VALUE;
}
}
long digit0 = Math.abs((long)dividend);
long digit1 = Math.abs((long)divisor);
int result = 0, sign = ((((dividend >> 31)&0x1)^((divisor >> 31)&0x1))==1)?-1:1;
int index = 0;
while (digit1 <= (digit0>>1)){
index ++;
digit1 <<= 1;
}
while (index >= 0){
if (digit0 >= digit1){
result += (1 << index);
digit0 = digit0 - digit1;
}
index--;
digit1 >>= 1;
}
return (sign==-1)?-result:result;
}
}