Rikka with Graph
题意:有n个点,你可以选择连接m条边,两个连接的点距离为1,不连接的距离为n,求这个无向图的所有边权和的最小值。
数据范围:
0<=t<=10
1<=n<=10^6, 1<=m<=10^12
分析:
用m条边进行构图,可以构建菊花图,中间一个点,其他都是绕这个点围城圈的图,有最小边权和。
若点边关系为n(n-1)/2<=m说明每一个点可以直接连接任意一点,则距离和为n(n-1)
若点边关系为m>=n-1,说明至少可以连成一棵树,连成以一个点为中心散开的菊花图,假设只有n-1条边,那么每多一条边距离就减2(因为是无向图)
若点边关系为m<n-1,有几个孤立点y(y=n-(m+1)),距离和为孤立点到所有点(y*n*(n-1))+连接点到孤立点((n-y)*y*n),连接点到连接点(2*m+2*m*(m-1)),
则距离和为(m+n)*(n-(m+1))*n+2*m+m*(m-1)*2。
AC代码