找规律+菊花图 - hdu6090

探讨如何使用m条边构建无向图,使得边权和最小。分析了不同点边关系下的构建策略,包括菊花图结构,并给出了数据范围和AC代码。
摘要由CSDN通过智能技术生成

 

Rikka with Graph

 

 

题意:有n个点,你可以选择连接m条边,两个连接的点距离为1,不连接的距离为n,求这个无向图的所有边权和的最小值。

 

数据范围:

0<=t<=10

1<=n<=10^6, 1<=m<=10^12

 

分析

用m条边进行构图,可以构建菊花图,中间一个点,其他都是绕这个点围城圈的图,有最小边权和。

若点边关系为n(n-1)/2<=m说明每一个点可以直接连接任意一点,则距离和为n(n-1)
若点边关系为m>=n-1,说明至少可以连成一棵树,连成以一个点为中心散开的菊花图,假设只有n-1条边,那么每多一条边距离就减2(因为是无向图)
若点边关系为m<n-1,有几个孤立点y(y=n-(m+1)),距离和为孤立点到所有点(y*n*(n-1))+连接点到孤立点((n-y)*y*n),连接点到连接点(2*m+2*m*(m-1)),
则距离和为(m+n)*(n-(m+1))*n+2*m+m*(m-1)*2。

 

AC代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值