How Many Trees?
题意:给定一棵n个节点的二叉树, 求这棵树有多少个二叉树。
数据范围: n<=100
思路:
n个节点的二叉树有多种,多种二叉树里面又有子树。当n到达100时,结果是一个庞大的数字,所以要用到大数。
在卡特兰数的应用里面,求二叉树的个数是一个典型的应用,还有 合法的入栈出栈序列数、多边形分成三角形的个数、圆括弧插入公式中的方法数 都是卡特兰数的应用
卡特兰数详解: Math173 (这个版面好看)
代码:
#include <stdio.h> //最大到100,进行预处理
#include <iostream>
#include <string.h>
#define base 10000
#define maxn 100
using namespace std;
int num[105][100];
void multiply(int a[],int b)
{
int i,temp = 0;
for(i = maxn - 1; i >= 0; i--)
{
temp += a[i]*b;
a[i] = temp%base;
temp /= base;
}
}
void dive(int a[],int b)
{
int i,temp = 0;
for(i = 0; i < maxn; i++)
{
temp = temp*base + a[i];
a[i] = temp / b;
temp %= b;
}
}
int main()
{
int i,n;
memset(num,0,sizeof(num));
num[1][maxn-1] = 1;
for(i = 2; i <= 100;i++)
{
memcpy(num[i],num[i-1],maxn*sizeof(int));
multiply(num[i],4*i-2);
dive(num[i],i+1);
}
while(scanf("%d",&n)!=EOF)
{
i = 0;
while(num[n][i] == 0)i++;
printf("%d",num[n][i++]);
for(; i < maxn; i++)
{
printf("%04d",num[n][i]);
}
printf("\n");
}
return 0;
}
以上等价于求 n个入栈操作,n个出栈操作,典型的入栈操作数 等于 出栈操作数,但是还有不等于的情况,如下:
Buy the Ticket
题意:电影院卖票。一张票50元。一开始没有零钱。有m+n个人买票,m个人拿50元的钞票,n个人拿100的。问队伍有多少种排列方式可以使得卖票能顺利进行下去。
数据范围:m, n <=100 , m==n==0结束输入
题解:很典型的卡特兰数,详情参见 i_fuqiang的专栏
代码:
#include <iostream>
#include <string>
using namespace std;
#define MAX 100
#define BASE 10000
void multiply(int a[],int Max,int b) //大数乘小数
{
int i,array=0;
for (i=Max-1; i>=0; i--)
{
array+=b*a[i];
a[i] = array%BASE;
array /= BASE;
}
}
void divide(int a[], int Max, int b) //大数除小数
{
int i,div=0;
for (i=0;i<Max; i++)
{
div = div*BASE + a[i];
a[i] = div / b;
div %= b;
}
}
int fact[205][MAX];
void setFact () //求出0-200的阶乘值
{
fact[0][MAX-1] = fact[1][MAX-1] = 1;
for ( int i = 2; i <= 200; ++ i )
{
memcpy ( fact[i] , fact[i-1] , MAX * sizeof ( int ) );
multiply ( fact[i] , MAX , i );
}
}
void outPut ( int ctl[MAX] )
{
int i = 0;
while ( i < MAX && ctl[i] == 0 )//去掉前面的为0的项
{
i ++ ;
}
printf ( "%d", ctl[i++] );
while ( i < MAX )
{
printf ( "%04d", ctl[i++] );
}
putchar ( '\n' );
}
int res[MAX];
int main ()
{
int M,N;
int ca = 1;
setFact(); //打表
while ( cin >> M >> N , M + N )
{
printf ( "Test #%d:\n",ca++ );
if ( N > M )
{
puts ( "0" );
continue;
}
memcpy ( res , fact[M+N] , MAX * sizeof ( int ) ); //阶乘 ( m + n )!
multiply ( res, MAX, M - N + 1 ); // ( m + n )! * ( m-n+1 )
divide ( res, MAX, M + 1 ); // ( m + n )! * ( m-n+1 ) / ( m+ 1 )
outPut ( res );
}
return 0;
}