图的遍历
从图中某一顶点出发,并系统地访问完图中的所有顶点,且都恰好访问一次的运算操作就被称作 图的遍历
图的遍历理解起来并不是很难,可以分开理解:“遍”意为全部,“历”意为经历、经过,合起来就是:全部顶点都经过一遍
注:为了避免重复访问了同一顶点,通常会使用一个标记数组visited来判断。visited[i]=0时代表还未访问,=1时代表已经访问过
遍历的分类
图的遍历方式分为两种:深度优先遍历与广度优先遍历,二者的时间复杂度都是O(n2)
深度优先遍历
运用:递归,回溯
方式:从起始点(假设是A)出发,并将点A标记好,然后再去访问与A相连,且未被访问过的顶点。一个中间的顶点(假设是B)在访问完B的所有邻接点后,再退回到B的上一个点(假设是C,即访问时由C到B),去访问C的另一个未被访问的邻接点,继续遍历。在选择邻接点遍历的先后时,一般准则是小序号优先
例如对于上面这个无向图进行深度优先遍历,起始点假定为1,程序的步骤为:
先由1 -> 2 -> 3的顺序访问,由于这时候1已经被标记,所以退回到2,再退回到1
从1开始再访问未被访问的点4,由于4没有邻接点,再退回到1
再从1访问未被访问的点5,再退回1
这时起始点的所有邻接点都被访问完毕,遍历结束。
代码实现:
(假设为邻接表存储)
void dfs(int u,int fa)//fa为上一个点
{
if(visited[u])
return;
visited[u]=1;
for(i=head[u];i;i=nxt[i])
{
if(to[i]=fa)//防止自环
continue;
dfs(to[i],u);
}
}
广度优先遍历
运用:队列
方式:与广搜BFS相似,所以广度优先遍历一张图,只要在BFS的基础上上稍作改动即可。
代码实现
(假设为邻接表储存)
void bfs(int index)
{
memset(visited,0,sizeof(visited));
int t,i;
visited[index]=1;
q.push(index);
while(!q.empty())
{
t=q.front();
q.pop();
for(i=head[t];i;i=nxt[i])
{
if(!visited[to[i]])
{
visited[to[i]]=1;
q.push(to[i]);
}
}
}
}
一笔画问题
如果有一个图存在一笔画,则这个一笔画的路径就是欧拉路,如果这条路径最后还回到了起点,那这个路就被称为欧拉回路
我们先定义奇点是这个点的度是奇数的点,偶点则是度为偶数个的点
那么存在以下两个定理:
- 欧拉路:图为连通图,且只有2个奇点
- 欧拉回路:图为连通图,且无向图中每个顶点都是偶点,有向图中每个顶点的出度等于入度
相关题目:一笔画问题
代码实现
#include<bits/stdc++.h>
using namespace std;
stack<int> s;
int head[1024];//顶点数
int nxt[2048],to[1024];//边数,如果是无向图边数*2
int visited[1024];//标记边有没有访问过
int tot=1,cnt=0;
int ans[2048];
void add_edge(int u,int v)
{
nxt[++tot]=head[u];
to[tot]=v;
head[u]=tot;
}
void euler(int index)
{
int i,u;
s.push(index);
while(!s.empty())
{
u=s.top();//注意这里不弹栈,把当前这个点能访问的边都走一下,走到的点压在当前点之上
i=head[u];
while(i&&visited[i])
i=nxt[i];
if(i)
{
s.push(to[i]);
head[u]=nxt[i];//这里把访问过的边直接去掉,提高遍历效率
visited[i]=visited[i^1]=1;//如果是无向图,来回边都标记下
}
else
{
s.pop();
ans[++cnt]=u;//这个数组看具体题目,用来保存欧拉遍历的结果,有时候可能是点有时候可能是边
}
}
}
int main()
{
int i,n,m,u,v,w;
scanf("%d %d",&n,&m);
for(i=0;i<m;i++)
{
scanf("%d %d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
euler(1);
for(i=1;i<=cnt;i++)
printf("%d ",ans[i]);
return 0;
}