hdu5521M - Meeting(最短路)

题意:

有n个点,m个关系;对于每个关系,输入t,s,接着输入s个数,表示这s个数俩俩之间有边且权值都为t。两个人分别从同时1,n出发,问两人相遇所耗的最短距离,相遇只能在结点上相遇,且若两人走到距离不同则取最大的。求出所有符合条件相遇时的结点,若没有,则输出Evil John,若有多个,则按字典序最小输出所有可行结点。

思路:

以1为起点跑最短路,记录每个点的距离disx,然后以n为起点跑最短路,记录每个点的距离disy,然后枚举每个点作为相遇点,并记录其作为相遇点时所耗的距离(diss=max(disx,disy)),然后得出最短距离minn,输出所有diss等于minn的点。

难点主要是如何高效的建图;因为n为1e5,建立邻接矩阵的话会爆内存,建立邻接表的话要建1e10条边,跑最短路会超时。题目又说s的总和最大为1e6,所以可以额外建1e6个点,对于每个s,其后的s个点都与s建立s个权值为t的正向边和s个权值为0的反向边(网络流的建图思想),,这样最多只用建2*1e6条边。

套模板要注意节点数为n+m。

代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<ll,int> pii;
const int maxn = 2e6+7;
const int maxm = 2e6+7;
const ll inf = 0x3f3f3f3f;
struct edge
{
    int to,val,next;
}e[maxm];

int vis[maxn],head[maxn],in[maxn];
ll dis[maxn],disx[maxn],disy[maxn];

int n,m,cnt;

void add(int u,int v,int val)
{
    e[cnt] = (edge){v,val,head[u]};
    head[u] = cnt++;
}
priority_queue<pii,vector<pii>,greater<pii> > pq;
void dijkstra(int s)
{
    while(!pq.empty())
        pq.pop();
    pq.push(make_pair(0,s));
    dis[s] = 0;
    for(int i = 0;i<=n+m+1;i++)
        vis[i] = 0;
    while(!pq.empty())
    {
        pii p = pq.top();
        int u = p.second;
        //cout<<u<<endl;
        //cout<<head[u]<<endl;
        pq.pop();
        if(vis[u])
            continue;
        vis[u] = 1;
        for(int i = head[u];i!=-1;i = e[i].next)
        {
           // cout<<i<<endl;
            int v = e[i].to;
            if(!vis[v])
            {
                if(dis[v]>dis[u]+e[i].val)
                {
                    dis[v] = dis[u]+e[i].val;
                    pq.push(make_pair(dis[v],v));
                }
            }
        }
    }
}



void init()
{
    cnt = 0;
    memset(head,-1,sizeof(head));
}

struct node
{
    int num;
    ll val;
}ans[maxn];
int main()
{
    int t,kase = 1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i = 1;i<=m;i++)
        {
            int t,s;
            scanf("%d%d",&t,&s);
            for(int j = 1;j<=s;j++)
            {
                int num;
                scanf("%d",&num);
                add(num,n+i,t);
                add(n+i,num,0);
            }
        }
        for(int i = 1;i<=n+m+1;i++)
            dis[i] = inf;
        dijkstra(1);
        for(int i = 1;i<=n;i++)
            disx[i] = dis[i];
        for(int i = 1;i<=n+m+1;i++)
            dis[i] = inf;
        dijkstra(n);
        for(int i = 1;i<=n;i++)
            disy[i] = dis[i];
        int len = 0;
        ll minn = inf;
        for(int i = 1;i<=n;i++)
        {
            ll maxx = max(disx[i],disy[i]);
            if(maxx!=inf)
            {
                ans[len].num = i;
                ans[len].val = maxx;
                len++;
                minn = min(minn,maxx);
            }
        }
        if(len==0)
        {
            printf("Case #%d: Evil John\n",kase++);
        }
        else
        {
            printf("Case #%d: %lld\n",kase++,minn);
            int flag = 0;
            for(int i = 0;i<len;i++)
            {
                if(ans[i].val==minn)
                {
                    if(!flag)
                        printf("%d",ans[i].num),flag = 1;
                    else
                        printf(" %d",ans[i].num);
                }
            }
            puts("");
        }
    }
    return 0;
}

没有更多推荐了,返回首页