DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement
这篇文章主要就是将analytical placement问题映射成为神经网络的训练问题,以下是觉得比较核心的一段文字:
所以本质上,这篇文章仍然将placement处理成一个优化问题,只是求解的手段,映射成为神经网络中的训练问题,也就是一个优化过程。然后问题的核心就是,如何设计低级运算方法以及梯度的传播方法来进行GPU计算的加速。以及选用不同的优化器进行加速。
DREAM-GAN: Advancing DREAMPlace towards Commercial-Quality using Generative Adversarial Learning
核心很简单,就是将上述的Dreamplace作为生成器,然后加一个判别器,给Dreamplace生成的布局给了一个新的目标,也就是和真的芯片布局比较相似,下面截几个代表性的图放下面: