今天给大家带来《Prompt Engineering提示词工程实战教程》,在大模型时代,提示词工程是用户与大模型之间沟通的桥梁,掌握撰写优质的Prompt技能成为AI时代每个人必不可少的技能。本系列教程力求通过最简单的语言,带你了解提示词工程基本的原则,帮助你写出更优质的Prompt,让你在AI大模型时代,最大限度放大自己的创造力。
万能公式
作为开宗明义的第一篇文章,本篇文章将带你系统了解一个好的Prompt的结构是什么样子,优质的Prompt有什么标准。在大多数的场景中,Prompt有一个万能公式,通过这个公式,可以保证你Prompt输出效果满足底线标准。
你可能在网络上看到过很多这个万能公式的不同版本,每个公式的细节都不相同,但是这不重要,当你掌握了通用方法,自然可以根据不同的角色、场景等信息,设计出适合自己的万能公式。
prompt = 角色 + 任务 + 要求 + 细节【步骤拆解、范例说明,技巧点拨等】
这个公式用大白话解释就是你要告诉大模型:你是谁?要做什么?怎么做?举个例子,现在你告诉大模型:生成一篇小红书风格的口红种草文案,字数不少于100字,风格要俏皮一些。下面我们来拆解这个公式,看每个元素都代表什么意思。
-
角色:就是你要生成这段信息的主体对象,比如“生成一篇小红书风格的口红种草文案”,“口红”就是角色。
-
任务:就是需要大模型完成的任务类型,比如生成一张海报,在这个案例中就是生成一篇种草文案。
-
要求:就是你希望模型完成某一项具体的要求,不少于100字就是具体的要求。
-
细节:如果你想丰富模型最终生成的结果,可以增加一些细节,比如文案的风格等。
接下来,我们来用灵境矩阵的【新媒体文章创作】这个智能体来试一下这个万能公式的效果,下图中是我没有用万能公式,随便写的一个问题需求,相信很多人给大模型提问都是这样的风格,可以看到,模型给到的回答非常的冗余,内容分不清主次。
但是如果我们用了万能公式来输出Prompt,效果明显提升了一个台阶,如下图所示,模型给到的回答更像是一个具体的人,且极具小红书的风格,你可以直接拿来去用,而不是冰冷的机器回答的文案。
优质Prompt标准
虽然不同的应用场景下对优质的Prompt定义有所区别,但是我们依然可以找到一些共性的特点。具体来说,一条优质的Prompt一般满足以下特点:
-
明确和具体:提示词应当清晰明了,具体说明你希望获得的信息或答案。避免模糊和含糊不清的表达方式。
-
简洁明了:保持简洁,避免使用冗长或复杂的句子。简单直接的表达方式更容易理解。
-
具有上下文:在你的提示中包含相关的上下文信息,以便大模型更好地理解你的问题或需求。提供关键信息,而不是依赖于模糊的问题。
-
避免歧义:在同类任务中,更换主题词后,Prompt依然可以取得好的效果,避免使用容易引起歧义的词语或短语。
-
使用关键词:强调关键词,这有助于指导大模型需要关注的重点有哪些,可以通过加粗、斜体或其他方式来实现。
这么讲可能还不够具象,下面我举几个例子来带你看一下优质的Prompt都长什么样子。
1.优质的Prompt对话题有足够的背景信息:
-
优质: 请提供有关可控核聚变的最新研究进展和技术趋势的详细信息。
-
反例: 可控核聚变是什么?
2.具体的指令:
-
优质: 以500字的篇幅解释人工智能在医学诊断中的应用,并列举相关的成功案例。
-
反例: 写点关于人工智能的东西。
3.引导性强,具体指明期望的回答形式:
-
优质: 以比较分析的方式说明区时序数据库和传统关系型数据库的优劣,并指出在哪些场景下使用时序数据库更有优势。
-
反例: 写点关于数据库相关的东西。
下面,我们来通过灵境矩阵平台的【物理反应助手】这个智能体,来测试下第一个案例,通过下面截图我们可以看到,当你输入一条有足够背景信息的Prompt时,你可以从实验装置的进步、高温超导技术的突破、数值模拟和人工智能的应用、核聚变能源商业化等多个方面对可控核聚变有一个全面的认识。
反之,你只能得到一条模糊不清、信息密度不高、可读性差的回答。
好了,现在你已经知道了如何通过万能公式写出一条合格的Prompt,同时你也知道了一条优质的Prompt该长什么样子,但是仅仅就这些了么?在下一篇教程中,我将带你了解Prompt进阶技巧,看如何将提示词工程“玩出花”。
点击进入灵境矩阵平台官网:灵境矩阵 | 想象即现实