poj3264 RMQ自用模板

本文介绍了如何使用Range Minimum Query (RMQ)算法在O(1)时间内处理区间内的最大值查询。通过构建dpmax和dpmin数组,对数组进行预处理,能在nlogn复杂度下完成初始化,之后每次查询只需常数时间。适合处理大量数据的高效区间最值查找问题。
摘要由CSDN通过智能技术生成

现在给你一个问题:给你一个数组 ,其中有N个数字,现在给你一次询问,给你区间[l ,r],问你在这个区间内的最大值为多少?

RMQ(Range Minimum/Maximum Query),即区间最值查询。RMQ算法一般用较长时间做预处理,时间复杂度为O(nlogn),然后可以在O(1)的时间内处理每次查询。

我们设二维数组dpi表示从第i位开始连续 2^j 个数中的最小值。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<map>
#include<stack>
#include<string>
#include<string.h>
#include<cstdio>
using namespace std;
int dpmax[50005][20];
int dpmin[50005][20];
int n,q;
int logg(int n){
    int count = 0;
    while(n){
        count++;
        n>>=1;
    }
    return --count;
}
void rmq_init(){
    for(int i=1;i<=n;i++){
        scanf("%d",&dpmax[i][0]);
        dpmin[i][0] = dpmax[i][0];
    }
    for(int j=1;(1<<j)<=n;j++){
        for(int i=1;i+(1<<j)-1<=n;i++){
            dpmax[i][j] = max(dpmax[i][j-1],dpmax[i+(1<<j-1)][j-1]);
            dpmin[i][j] = min(dpmin[i][j-1],dpmin[i+(1<<j-1)][j-1]);
        }
    }
    return ;
}
void rmq(){
    int l,r;
    scanf("%d%d",&l,&r);
    int k = logg(r-l+1);
    int maxx = max(dpmax[l][k],dpmax[r-(1<<k)+1][k]);
    int minn = min(dpmin[l][k],dpmin[r-(1<<k)+1][k]);
    printf("%d\n",maxx-minn);
}
int main(){
    scanf("%d%d",&n,&q);
    rmq_init();
    for(int i=0;i<q;i++){
        rmq();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值