现在给你一个问题:给你一个数组 ,其中有N个数字,现在给你一次询问,给你区间[l ,r],问你在这个区间内的最大值为多少?
RMQ(Range Minimum/Maximum Query),即区间最值查询。RMQ算法一般用较长时间做预处理,时间复杂度为O(nlogn),然后可以在O(1)的时间内处理每次查询。
我们设二维数组dpi表示从第i位开始连续 个数中的最小值。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<map>
#include<stack>
#include<string>
#include<string.h>
#include<cstdio>
using namespace std;
int dpmax[50005][20];
int dpmin[50005][20];
int n,q;
int logg(int n){
int count = 0;
while(n){
count++;
n>>=1;
}
return --count;
}
void rmq_init(){
for(int i=1;i<=n;i++){
scanf("%d",&dpmax[i][0]);
dpmin[i][0] = dpmax[i][0];
}
for(int j=1;(1<<j)<=n;j++){
for(int i=1;i+(1<<j)-1<=n;i++){
dpmax[i][j] = max(dpmax[i][j-1],dpmax[i+(1<<j-1)][j-1]);
dpmin[i][j] = min(dpmin[i][j-1],dpmin[i+(1<<j-1)][j-1]);
}
}
return ;
}
void rmq(){
int l,r;
scanf("%d%d",&l,&r);
int k = logg(r-l+1);
int maxx = max(dpmax[l][k],dpmax[r-(1<<k)+1][k]);
int minn = min(dpmin[l][k],dpmin[r-(1<<k)+1][k]);
printf("%d\n",maxx-minn);
}
int main(){
scanf("%d%d",&n,&q);
rmq_init();
for(int i=0;i<q;i++){
rmq();
}
return 0;
}