过程框图如下:
具体步骤如下:
模型训练
-
安装环境依赖(https://github.com/AlexeyAB/darknet#requirements-for-windows-linux-and-macos)
-
训练工具编译
git clone https://github.com/AlexeyAB/darknetcd darknet
mkdir build_releasecd build_release
cmake …
cmake --build . --target install --parallel 8 -
准备数据集,训练集图片放在train文件夹内,验证集放在val文件夹内。
-
数据标注
git clone https://hub.fastgit.org/AlexeyAB/Yolo_mark.git
cmake .
make
./linux_mark.sh
使用方法详见Yolo_mark目录内的readme.md -
模型训练
除两个数据集外,启动训练还需要配置几个参数文件。
obj.data
obj.name
train.txt
以上三个文件,会在数据标注时自动生成在Yolo_mark/x64/Release/data目录下,obj.name文件包含所有目标的类别名,train.txt包含所有训练图片路径,val.txt非必须,可以手动从train文件中分割出30%的图片用于验证