From YOLO to Edge-AI Camera Module

本文详细介绍了如何将YOLO模型训练、转换并部署到OpenNCC嵌入式硬件上进行边缘计算。首先,通过darknet框架进行模型训练,包括安装依赖、数据标注和模型配置。接着,利用TensorFlow将Darknet模型转换为.pb格式,再通过OpenVINO将其转化为IR和blob文件,最后将这些文件应用于OpenNCC进行视觉检测。
摘要由CSDN通过智能技术生成

过程框图如下:
从Yolo到边缘AI相机OpenNCC
具体步骤如下:

模型训练

  1. 安装环境依赖(https://github.com/AlexeyAB/darknet#requirements-for-windows-linux-and-macos)

  2. 训练工具编译
    git clone https://github.com/AlexeyAB/darknetcd darknet
    mkdir build_releasecd build_release
    cmake …
    cmake --build . --target install --parallel 8

  3. 准备数据集,训练集图片放在train文件夹内,验证集放在val文件夹内。

  4. 数据标注
    git clone https://hub.fastgit.org/AlexeyAB/Yolo_mark.git
    cmake .
    make
    ./linux_mark.sh
    使用方法详见Yolo_mark目录内的readme.md

  5. 模型训练
    除两个数据集外,启动训练还需要配置几个参数文件。
    obj.data
    obj.name
    train.txt
    以上三个文件,会在数据标注时自动生成在Yolo_mark/x64/Release/data目录下,obj.name文件包含所有目标的类别名,train.txt包含所有训练图片路径,val.txt非必须,可以手动从train文件中分割出30%的图片用于验证

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值