[Zap]

Zap

题意

对于给定的整数a,b和d,有多少正整数对x,y,满足 x ≤ a , y ≤ b x\leq a,y\leq b xa,yb,并且 g c d ( x , y ) = d gcd(x,y)=d gcd(x,y)=d

分析

要求 x ≤ a , y ≤ b x\leq a,y\leq b xa,yb,并且 g c d ( x , y ) = d gcd(x,y)=d gcd(x,y)=d,先把x和y映射一下,令 x ′ = ⌊ x d ⌋ x'=\lfloor \frac{x}{d} \rfloor x=dx, y ′ = ⌊ y d ⌋ y'=\lfloor \frac{y}{d} \rfloor y=dy,那么就变成了 x ′ ≤ ⌊ a d ⌋ , y ′ ≤ ⌊ b d ⌋ x' \leq \lfloor \frac{a}{d} \rfloor,y' \leq \lfloor \frac{b}{d} \rfloor xda,ydb, g c d ( x ′ , y ′ ) = 1 gcd(x',y')=1 gcd(x,y)=1,再令 a ′ = ⌊ a d ⌋ , b ′ = ⌊ b d ⌋ a'=\lfloor \frac{a}{d} \rfloor,b'=\lfloor \frac{b}{d} \rfloor a=da,b=db,最终就是 x ′ ≤ a ′ , y ′ ≤ b ′ , g c d ( x ′ , y ′ ) = 1 x'\leq a',y' \leq b',gcd(x',y')=1 xa,yb,gcd(x,y)=1

根据容斥原理可知,答案就是 a ′ b ′ a'b' ab-gcd=2时-gcd=3时+gcd=6时…

再根据数列分块知识, ⌊ a x ⌋ \lfloor \frac{a}{x} \rfloor xa中结果相同的最大的 x = ⌊ a ⌊ a x ⌋ ⌋ x=\lfloor \frac{a}{\lfloor \frac{a}{x} \rfloor} \rfloor x=xaa,可知时间复杂度为 O ( n ) O(\sqrt n) O(n )

所以要预处理出莫比乌斯函数的前缀和,再分别计算出每一段值相等时最大的右边界 m i n ( a ′ , b ′ , ⌊ a ′ ⌊ a ′ l ⌋ ⌋ , ⌊ b ′ ⌊ b ′ l ⌋ ⌋ ) min({a',b',\lfloor \frac{a'}{\lfloor \frac{a'}{l} \rfloor} \rfloor, \lfloor \frac{b'}{\lfloor \frac{b'}{l} \rfloor} \rfloor}) min(a,b,laa,lbb),相等的值分别就是 ⌊ a ′ l ⌋ \lfloor \frac{a'}{l} \rfloor la ⌊ b ′ l ⌋ \lfloor \frac{b'}{l} \rfloor lb
a n s = a ′ b ′ + ∑ l = 2 m i n ( a ′ , b ′ ) ( μ ( r ) − μ ( l − 1 ) ) ⌊ a ′ l ⌋ ⌊ b ′ l ⌋ \begin{align} ans=a'b'+\sum_{l=2}^{min(a',b')}(\mu(r)-\mu(l-1))\lfloor \frac{a'}{l} \rfloor \lfloor \frac{b'}{l} \rfloor \end{align} ans=ab+l=2min(a,b)(μ(r)μ(l1))lalb

AC代码

#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int cnt, prime[1000010], mobius[1000010], pre[1000010];
bool vis[1000010];
void init() {
    mobius[1] = 1;
    for (int i = 2; i <= 1000000; i++) {
        if (!vis[i]) {
            prime[++cnt] = i;
            mobius[i] = -1;
        }
        for (int j = 1; j <= cnt && i * prime[j] <= 1000000; j++) {
            vis[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                mobius[i * prime[j]] = 0;
                break;
            }
            mobius[i * prime[j]] = mobius[i] * mobius[prime[j]];
        }
    }
    for (int i = 1; i <= 1000000; i++) {
        pre[i] = mobius[i] + pre[i - 1];
    }
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    init();
    int q;
    cin >> q;
    while (q--) {
        int a, b, d;
        cin >> a >> b >> d;
        LL ans = 0;
        a /= d;
        b /= d;
        ans = 1LL * a * b;
        int n = min(a, b);
        for (int l = 2, r; l <= n; l = r + 1) {
            r = min({n, a / (a / l), b / (b / l)});
            ans = ans + 1LL * (pre[r] - pre[l - 1]) * (a / l) * (b / l);
        }
        cout << ans << '\n';
    }
    return 0;
}

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值