基于java语言轻量级实时风控引擎

RADAR 是一款基于 Java 的轻量级实时风控引擎,采用 SpringBoot+Mongodb+Groovy+Es 搭建,适用于反欺诈场景。支持中文及自定义规则,拥有可视化规则编辑器,并可实现 100ms 内响应。
摘要由CSDN通过智能技术生成

介绍:

radar是一款基于java语言,使用Springboot + Mongodb + Groovy + Es等框架搭建的轻量级实时风控引擎,适用于反欺诈应用场景,极简的配置,真正做到了开箱即用。
项目特点:
实时风控,特殊场景可以做到100ms内响应
可视化规则编辑器,丰富的运算符、计算规则灵活
支持中文,易用性更强
自定义规则引擎,更加灵活,支持复杂多变的场景
插件化的设计,快速接入其它数据能力平台
NoSQL,易扩展,高性能
配置简单,开箱即用!
项目架构:
前后端分离架构
后端技术框架: SpringBoot + Mybatis + tkMapper + Mysql + MongoDB + Redis + Groovy + ES + Swagger
前端技术框架: React(SPA)
源码更新日志:
radar v1.0.7:
1、配置策略规则的时候支持抽象指标和基础字段。
2、规则命中查询增加时间过滤条件
3、修改黑白名单数据时,需要先删除原来的数据.
4、idea 使用 mapstrct 插件bug修复


网盘下载地址:

http://kekewl.cc/tbRvMA9B1Ng0


图片:


背景 当前互联网企业存在很多业务风险,有些风险(比如薅羊毛)虽然没有sql注入漏洞利用来的直接,但是一直被羊毛党、刷单党光顾的企业长期生存下来的几率会很低! 账号:垃圾注册、撞库、盗号等 交易:盗刷、恶意占用资源、篡改交易金额等 活动:薅羊毛 短信:短信轰炸 项目介绍 实时业务风控系统是分析风险事件,根据场景动态调整规则,实现自动精准预警风险的系统。 本项目只提供实时风控系统框架基础和代码模板。 需要解决的问题 哪些是风险事件,注册、登录、交易、活动等事件,需要业务埋点配合提供实时数据接入 什么样的事件是有风险的,风险分析需要用到统计学,对异常用户的历史数据做统计分析,找出异于正常用户的特征 实时性,风险事件的分析必须毫秒级响应,有些场景下需要尽快拦截,能够给用户止损挽回损失 低误报,这需要人工风控经验,对各种场景风险阈值和评分的设置,需要长期不断的调整,所以灵活的规则引擎是很重要的 支持对历史数据的回溯,能够发现以前的风险,或许能够找到一些特征供参考 项目关键字 轻量级,可扩展,实时Java业务风控系统 基于Spring boot构建,配置文件能少则少 使用drools规则引擎管理风控规则,原则上可以动态配置规则 使用redis、mongodb做风控计算和事件储存,历史事件支持水平扩展 原理 统计学 次数统计,比如1分钟内某账号的登录次数,可以用来分析盗号等 频数统计,比如1小时内某ip上出现的账号,可以用来分析黄牛党等 最大统计,比如用户交易金额比历史交易都大,可能有风险 最近统计,比如最近一次交易才过数秒,可能机器下单 行为习惯,比如用户常用登录地址,用户经常登录时间段,可以用来分析盗号等 抽象:某时间段,在条件维度(可以是多个维度复合)下,利用统计方法统计结果维度的值。充分发挥你的想象吧! 实时计算 要将任意维度的历史数据(可能半年或更久)实时统计出结果,需要将数据提前安装特殊结果准备好(由于事件的维度数量不固定的,选取统计的维度也是随意的,所以不是在关系数据库中建几个索引就能搞定的),需要利用空间换时间,来降低时间复杂度。 redis redis中数据结构sortedset,是个有序的集合,集合中只会出现最新的唯一的值。利用sortedset的天然优势,做频数统计非常有利。 比如1小时内某ip上出现的账号数量统计: 保存维度 ZADD key score member(时间复杂度:O(M*log(N)), N 是有序集的基数, M 为成功添加的新成员的数量),key=ip,score=时间(比如20160807121314),member=账号。存储时略耗性能。 结构如下: 1.1.1.1 |--账号1 20160807121314 |--账号2 20160807121315 |--账号n 20160807121316 2.2.2.2 |--账号3 20160807121314 |--账号4 20160807121315 |--账号m 20160807121316 计算频数 ZCOUNT key min max(时间复杂度:O(1)),key=ip,min=起始时间,max=截止时间。计算的性能消耗极少,优势明显 redis lua 把保存维度,计算频数,过期维度数据等操作,使用lua脚本结合在一起,可以减少网络IO,提高性能 mongodb mongodb本身的聚合函数统计维度,支持很多比如:max,min,sum,avg,first,last,标准差,采样标准差,复杂的统计方法可以在基础聚合函数上建立,比如行为习惯: getDB().getCollection(collectionName).aggregate( Arrays.asList( match(match) --匹配条件维度 , group("$" + field, Accumulators.sum("_count", 1)) --求值维度的次数 , match(new Document("_count", new Document("$gte", minCount))) --过滤,超过minCount才统计 , sort(new Document("_count", -1)) --对次数进行倒叙排列 ) ); 建议在mongodb聚合的维度上建立索引,这样可以使用内存计算,速度较快。 redis性能优于mo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值