又是一道考试题
对一排泥土进行三种操作,使其变为目标状态,求最小花费代价。
请原谅我接下来奇怪的量词…
思路
-
大致方法:
很明显,求代价,就是用 dp 。但是,你会发现直接去推动态转移方程是很难的,所以,我们选择把泥土“量化”。
-
“量化泥土”:
我们把泥土按量进行排列,例如:
原数组是:1 2 3 4 ;
转移后是:1 2 2 3 3 3 4 4 4 4 。
这样一来, 我们就可以去处理 dp 数组 f f f 了。
-
初始化 dp 数组:
我们定义 f [ i ] [ j ] f[i][j] f[i][j] 表示用 i i i 个泥土构造 j j j 个泥土。
那么就需要初始化 f [ 0 ] [ j ] f[0][j] f[0][j] 以及 f [ i ] [ 0 ] f[i][0] f[i][0] 两者。
(这里并不难所以我就不多强调了) -
动态转移方程
最后,我们不难得出动态转移方程
(如果已经想出来的大佬就可以不用看了),具体推导过程如下:要得到 f [ i ] [ j ] f[i][j] f[i][j] ,我们有三种方式推得: f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] f[i-1][j] , f[i][j-1] , f[i-1][j-1] f[i−1][j],f[i][j−1],f[i−1][j−1] 。
-
从 f [ i − 1 ] [ j ] f[i-1][j] f[i−1][j] 推得:只需要在已满足的该状态下花费 y y y 费用多移过来一份泥土即可。
-
从 f [ i ] [ j − 1 ] f[i][j-1] f[i][j−1] 推得:在已满足状态下花费 x x x 费用多移走一份泥土即可。
-
从 f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i−1][j−1] 推得:在已满足状态下花费 z ∗ ( a [ i ] − b [ i ] ) z*(a[i]-b[i]) z∗(a[i]−b[i]) 费用把一份泥土转移即可。
综上!!!我们终于推出完整的动态转移方程为
(我终于敲完了):f [ i ] [ j ] = min ( f [ i − 1 ] [ j ] + y , f [ i ] [ j − 1 ] + x , f [ i − 1 ] [ j − 1 ] + z ∗ a b s ( a [ i ] − b [ j ] ) ) f[i][j] = \min (f[i - 1][j] + y, f[i][j - 1] + x, f[i - 1][j - 1] + z * abs (a[i] - b[j])) f[i][j]=min(f[i−1][j]+y,f[i][j−1]+x,f[i−1][j−1]+z∗abs(a[i]−b[j])) 。
-
差不多就是这些啦,更多细节请见代码。
C o d e Code Code
#include<bits/stdc++.h>
using namespace std;
int n, x, y, z;
const int maxn = 1005;
int a[maxn], b[maxn];
int f[maxn][maxn];
int numa, numb;//cal nums of a and b
inline int minn (int a, int b, int c)
{
return min (a, min (b, c));
}
int main()
{
scanf ("%d %d %d %d", &n, &x, &y, &z);
numa = 1;
numb = 1;
for (int i = 1; i <= n; i++)
{
int aa, bb;
scanf ("%d %d", &aa, &bb);
for (int j = 1; j <= aa; j++) a[numa++] = i;
for (int l = 1; l <= bb; l++) b[numb++] = i;
}
for (int i = 1; i <= numa; i++) f[i][0] = i * y;
for (int i = 1; i <= numb; i++) f[0][i] = i * x;
for (int i = 1; i <= numa; i++)
{
for (int j = 1; j <= numb; j++)
{
f[i][j] = minn (f[i - 1][j] + y, f[i][j - 1] + x, f[i - 1][j - 1] + z * abs (a[i] - b[j]));
}
}
printf ("%d\n", f[numa][numb]);
return 0;
}
若有排版,写法错误,麻烦管理员指出斧正,感激不尽!
若文章中有问题,请大佬们指出,谢谢!