LG-P3049 [USACO12MAR]Landscaping S 题解

7 篇文章 0 订阅

又是一道考试题

对一排泥土进行三种操作,使其变为目标状态,求最小花费代价。

请原谅我接下来奇怪的量词…

思路

  1. 大致方法:

    很明显,求代价,就是用 dp 。但是,你会发现直接去推动态转移方程是很难的,所以,我们选择把泥土“量化”

  2. “量化泥土”:

    我们把泥土按量进行排列,例如:

    原数组是:1 2 3 4 ;

    转移后是:1 2 2 3 3 3 4 4 4 4 。

    这样一来, 我们就可以去处理 dp 数组 f f f 了。

  3. 初始化 dp 数组:

    我们定义 f [ i ] [ j ] f[i][j] f[i][j] 表示用 i i i 个泥土构造 j j j 个泥土。

    那么就需要初始化 f [ 0 ] [ j ] f[0][j] f[0][j] 以及 f [ i ] [ 0 ] f[i][0] f[i][0] 两者。(这里并不难所以我就不多强调了)

  4. 动态转移方程

    最后,我们不难得出动态转移方程 (如果已经想出来的大佬就可以不用看了),具体推导过程如下:

    要得到 f [ i ] [ j ] f[i][j] f[i][j] ,我们有三种方式推得: f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] f[i-1][j] , f[i][j-1] , f[i-1][j-1] f[i1][j],f[i][j1],f[i1][j1]

    1. f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] 推得:只需要在已满足的该状态下花费 y y y 费用多移过来一份泥土即可。

    2. f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 推得:在已满足状态下花费 x x x 费用多移走一份泥土即可。

    3. f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i1][j1] 推得:在已满足状态下花费 z ∗ ( a [ i ] − b [ i ] ) z*(a[i]-b[i]) z(a[i]b[i]) 费用把一份泥土转移即可。

    综上!!!我们终于推出完整的动态转移方程为 (我终于敲完了)

    f [ i ] [ j ] = min ⁡ ( f [ i − 1 ] [ j ] + y , f [ i ] [ j − 1 ] + x , f [ i − 1 ] [ j − 1 ] + z ∗ a b s ( a [ i ] − b [ j ] ) ) f[i][j] = \min (f[i - 1][j] + y, f[i][j - 1] + x, f[i - 1][j - 1] + z * abs (a[i] - b[j])) f[i][j]=min(f[i1][j]+y,f[i][j1]+x,f[i1][j1]+zabs(a[i]b[j]))


差不多就是这些啦,更多细节请见代码。

C o d e Code Code

#include<bits/stdc++.h> 
using namespace std;

int n, x, y, z;
const int maxn = 1005;
int a[maxn], b[maxn];
int f[maxn][maxn];
int numa, numb;//cal nums of a and b

inline int minn (int a, int b, int c)
{
	return min (a, min (b, c));
}

int main()
{
	scanf ("%d %d %d %d", &n, &x, &y, &z);
	numa = 1;
	numb = 1;
	for (int i = 1; i <= n; i++)
	{
		int aa, bb;
		scanf ("%d %d", &aa, &bb);
		for (int j = 1; j <= aa; j++) a[numa++] = i;
		for (int l = 1; l <= bb; l++) b[numb++] = i;
	}
	for (int i = 1; i <= numa; i++) f[i][0] = i * y;
	for (int i = 1; i <= numb; i++) f[0][i] = i * x;
	for (int i = 1; i <= numa; i++)
	{
		for (int j = 1; j <= numb; j++)
		{
			f[i][j] = minn (f[i - 1][j] + y, f[i][j - 1] + x, f[i - 1][j - 1] + z * abs (a[i] - b[j]));
		}
	}
	printf ("%d\n", f[numa][numb]);
	return 0;
}

若有排版,写法错误,麻烦管理员指出斧正,感激不尽!

若文章中有问题,请大佬们指出,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值