【51Nod1386】双马尾机器人(分块+dp)

15 篇文章 0 订阅
9 篇文章 0 订阅

对于这种找互质的数的集合的题,一般是讨论每个数的质因子会不会有重复。

听说这种互质的题把质因子分为小于 n \sqrt{n} n 和大于 n \sqrt{n} n 是经典套路?

因为当 n n n 很小的时候,小于 n \sqrt{n} n 的质数并不多。比如对于这一题,小于 N = 1000 \sqrt{N=1000} N=1000 的数只有 11 11 11 个。

那么对于那些只有小于 N \sqrt{N} N 的质因子的数进行状压 dp,设 d p ( i , j ) dp(i,j) dp(i,j) 为前 i i i 个数中,所有选出的数的所有质因子的状态为 j j j(只考虑小于 N \sqrt N N 的质因子)。

j j j 的定义:如果选出的数的所有质因子中出现了第 k k k 个质数,那么把 j j j 在二进制下的第 k k k 位设为 1 1 1,否则为 0 0 0

例如,如果出现了 2 2 2(第 1 1 1 个质数)、 5 5 5(第 3 3 3 个质数)和 7 7 7(第 4 4 4 个质数的话), j j j 就应该是 ( 1101 ) 2 (1101)_2 (1101)2

那么假设 d p ( i − 1 ) dp(i-1) dp(i1) 都已经计算完毕,现在要计算 d p ( i , j ∣ s t a [ i ] ) dp(i,j|sta[i]) dp(i,jsta[i]),其中 j j j 是某个状态, s t a [ i ] sta[i] sta[i] i i i 的质因子状态。那么现在考虑的是状态 j ∣ s t a [ i ] j|sta[i] jsta[i]

  1. d p ( i , j ∣ s t a [ i ] ) = d p ( i − 1 , j ∣ s t a [ i ] ) dp(i,j|sta[i])=dp(i-1,j|sta[i]) dp(i,jsta[i])=dp(i1,jsta[i])。意思就是前 i − 1 i-1 i1 个数中已经选出了状态 j ∣ s t a [ i ] j|sta[i] jsta[i],那么数 i i i 肯定不能在加入这个方案内(不然不互质),所以选的数不增不减。

  2. d p ( i , j ∣ s t a [ i ] ) = d p ( i − 1 , j + 1 − ( m a x p i > 11 ) ) dp(i,j|sta[i])=dp(i-1,j+1-(maxp_i>11)) dp(i,jsta[i])=dp(i1,j+1(maxpi>11))。意思就是前 i − 1 i-1 i1 个数中已经选出了状态 j j j,那么现在肯定可以加入数 i i i。但是由于我们这里只考虑加入质因子都小于 N \sqrt{N} N 的情况,所以要减去一个 m a x p i > 11 maxp_i>11 maxpi>11

现在对只有小于 N \sqrt{N} N 的质因子的数都处理完了,那么对于含有大于 N \sqrt{N} N 的质因子的数怎么处理呢?(不妨设所有大于 N \sqrt{N} N 小于 N N N 的质数有 m m m 个)

不难发现,这些数恰好仅含有一个大于 N \sqrt{N} N 的质因子。所以我们至少要选 m m m 个数才能保证是“极大方案”。又因为要保证选的数最少,所以要恰好选 m m m 个就行了。

最后可以把 1 1 1 也取上。

代码:

#include<bits/stdc++.h>

#define N 1010
#define INF 0x7fffffff

using namespace std;

int t,n,k;
int cnt,prime[N],maxp[N],sta[N];
int dp[2][1<<12];
bool notprime[N];

void init()
{
	for(int i=2;i<=1000;i++)
	{
		if(!notprime[i])
		{
			prime[++cnt]=i;
			maxp[i]=cnt;
			sta[i]=(cnt<=11?(1<<(cnt-1)):0);
		}
		for(int j=1;j<=cnt&&i*prime[j]<=1000;j++)
		{
			int v=i*prime[j];
			notprime[v]=true;
			maxp[v]=max(maxp[i],j);
			sta[v]=sta[i]|(j<=11?(1<<(j-1)):0);
		}
	}
}

int main()
{
	init();
	scanf("%d",&t);
	for(int T=1;T<=t;T++)
	{
		scanf("%d%d",&n,&k);
		int m=1;
		while(prime[m]<=n) m++;
		m--;
		int tmp=max(0,m-11);
		m=min(m,11);
		int mpow=(1<<m);
		for(int i=0;i<mpow;i++) dp[0][i]=INF;
		dp[0][0]=0;
		int now=1;
		for(int i=1;i<=n;i++,now^=1)
		{
			for(int j=0;j<mpow;j++) dp[now][j]=dp[now^1][j];
			if(i==k) continue;
			for(int j=0;j<mpow;j++)
				if(!(j&sta[i])&&dp[now^1][j]!=INF)
					dp[now][j|sta[i]]=min(dp[now^1][j|sta[i]],dp[now^1][j]+1-(maxp[i]>11));
		}
		printf("Case #%d: %d\n",T,dp[now^1][mpow-1]+tmp+(k!=1));
	}
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值