【XSY3813】漏网之鱼(线段树)

在 “XSY未完成” 题单里咕了好久的题。

题面

漏网之鱼

题解

为了方便表述,不妨设 m e x ( l , r ) mex(l,r) mex(l,r) 表示 m e x ( a [ l ] , a [ l + 1 ] , ⋯   , a [ r ] ) mex(a[l],a[l+1],\cdots,a[r]) mex(a[l],a[l+1],,a[r])

首先,对于权值大于 n + 1 n+1 n+1 a [ i ] a[i] a[i],我们直接把它设为 n + 1 n+1 n+1 就行了,因为 m e x mex mex 肯定不会大于 n n n

然后 O ( n ) O(n) O(n) 预处理出 n x t i nxt_i nxti 表示 a i a_i ai 下一次出现的位置(不存在则为 n + 1 n+1 n+1)。

先考虑只有一次询问且询问的是 [ 1 , n ] [1,n] [1,n] 的情况。

我们考虑移动左端点,每次算出左端点固定的情况下的所有区间的答案。

开一棵线段树维护区间 m e x mex mex 和,其中第 i i i 个叶子节点表示 m e x ( t i m , i ) mex(tim,i) mex(tim,i)。(其中 t i m tim tim 为当前的左端点)

首先当左端点在 1 1 1 的时候,每个区间的 m e x mex mex 是可以预处理的,我们用这个来建树。

考虑左端点从 i i i 移动到 i + 1 i+1 i+1:此时对于右端点在 [ i + 1 , n x t [ i ] − 1 ] [i+1,nxt[i]-1] [i+1,nxt[i]1] 中的区间,都没有了 a i a_i ai 的贡献,所以这些区间的 m e x mex mex 要对 a i a_i ai min ⁡ \min min

但是我们如何同时维护区间取 min ⁡ \min min 和区间求和呢?

发现左端点固定、右端点递增时,区间的 m e x mex mex 值是单调不降的。所以我们对一个区间和 a i a_i ai min ⁡ \min min 实际上是对这个区间的右边一部分区间赋值为 a i a_i ai

那我们可以记录一个最大值,然后在线段树上二分查找第一个大于 a i a_i ai 的位置,区间赋值就行了。

每次移动左端点时统计一下答案即可。

考虑如何扩展到多组区间询问的情况。

我们可以参照主席树的思想:当左端点移动到 t i m tim tim 时,线段树中的节点存储的不再是当前的值,而是历史信息的和。

具体地,假设当前左端点移动到 t i m tim tim,线段树中的某一节点代表的区间为 [ x , y ] [x,y] [x,y],那么原本这个节点存储的值是 ∑ r = x y m e x ( t i m , r ) \sum\limits_{r=x}^{y}mex(tim,r) r=xymex(tim,r),现在变成了存储 ∑ l = 1 t i m ∑ r = x y m e x ( l , r ) \sum\limits_{l=1}^{tim}\sum\limits_{r=x}^{y}mex(l,r) l=1timr=xymex(l,r),也就是把之前 t i m tim tim 移动到每一个位置的答案都统计了起来。

那么我们可以把一组询问 [ l , r ] [l,r] [l,r] 拆成两个:当 t i m = r tim=r tim=r 时加上区间 [ l , r ] [l,r] [l,r] 的答案(即加上当左端点在 1 ∼ r 1\sim r 1r、右端点在 l ∼ r l\sim r lr 时的答案);当 t i m = l − 1 tim=l-1 tim=l1 时减去区间 [ l , r ] [l,r] [l,r] 的答案(即加上当左端点在 1 ∼ l − 1 1\sim l-1 1l1、右端点在 l ∼ r l\sim r lr 时的答案)。

那么现在的问题就是如何维护历史信息的和了,也就是如何维护这棵线段树。

发现对于某个叶子节点来说,如果一直都没有修改操作,那么它的贡献是关于 t i m tim tim 的一次函数形式,因为当左端点 t i m tim tim 右移的时候,它的增加量是一定的。

因为一次函数满足可加性,所以可以设一个 s u m k sumk sumk s u m b sumb sumb 表示区间内所有叶子节点的一次函数的 k k k b b b 的和。

那么如果有修改呢?

那么此时的斜率就变了,那么就会变成一个分段函数:

在这里插入图片描述

但我们不可能每个点都维护一个分段函数啊……

于是需要将拆完后的询问离线,并把他们按左端点排序,然后我们每次只需要维护最新的一条直线即可。

不妨设当前左端点从 t i m tim tim 移动到 t i m + 1 tim+1 tim+1,然后要将一个区间的直线的斜率全部区间赋值为 k ′ = a t i m k'=a_{tim} k=atim

那么对于这个区间内的某个叶子节点所代表的的直线,假设它原来的解析式为 f ( x ) = k j x + b j f(x)=k_jx+b_j f(x)=kjx+bj,又由于斜率变化后还是要经过点 ( t i m , f ( t i m ) ) (tim,f(tim)) (tim,f(tim)) 的,所以可以得到新的直线方程为:

f ( x ) = k ′ x + ( k j − k ′ ) t i m + b j f(x)=k'x+(k_j-k')tim+b_j f(x)=kx+(kjk)tim+bj

就是说由原来红的线变成了蓝的线:

在这里插入图片描述

那么对于整个区间来说:

s u m k ′ ← s i z e × k ′ s u m b ′ ← ( s u m k − s u m k ′ ) t i m + s u m b \begin{aligned} sumk'\gets &size\times k'\\ sumb'\gets &(sumk-sumk')tim+sumb \end{aligned} sumksumbsize×k(sumksumk)tim+sumb

但是这样做是不行的,因为你发现这个更新有先后顺序,所以不方便打懒标记。

那怎么办呢?

我们考虑当区间内的 k k k 都相同的时候才更新,自己推推发现这样可以改成区间加,变成一个只和 s i z e size size 有关而和 t i m tim tim 无关的式子。(详见代码)

代码如下:

#include<bits/stdc++.h>

#define N 1000010
#define ll long long

using namespace std;

inline int read()
{
	int x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x*f;
}

struct Query
{
	int pos,l,r,id,opt;
	Query(){};
	Query(int a,int l1,int r1,int b,int c){pos=a,l=l1,r=r1,id=b,opt=c;}
}q[N<<1];

inline bool operator < (Query a,Query b)
{
	return a.pos<b.pos;
}

int type,n,Q,numq,mex,a[N];
int last[N],nxt[N];
int id[N<<2],minn[N<<2],maxn[N<<2],lazyk[N<<2];
ll sumk[N<<2],sumb[N<<2],lazyb[N<<2];
bool vis[N],tag[N<<2];
ll Ans[N];

inline void up(int k)
{
	minn[k]=min(minn[k<<1],minn[k<<1|1]);
	maxn[k]=max(maxn[k<<1],maxn[k<<1|1]);
	sumk[k]=sumk[k<<1]+sumk[k<<1|1];
	sumb[k]=sumb[k<<1]+sumb[k<<1|1];
}

inline void downn(int k,int l,int r,int nowk,ll nowb)
{
	lazyk[k]+=nowk;
	lazyb[k]+=nowb;
	sumk[k]+=1ll*(r-l+1)*nowk;
	sumb[k]+=1ll*(r-l+1)*nowb;
	minn[k]+=nowk,maxn[k]+=nowk;
	tag[k]=1;
}

inline void down(int k,int l,int r,int mid)
{
	if(tag[k])
	{
		downn(k<<1,l,mid,lazyk[k],lazyb[k]);
		downn(k<<1|1,mid+1,r,lazyk[k],lazyb[k]);
		lazyk[k]=lazyb[k]=tag[k]=0;
	}
}

inline void build(int k,int l,int r)
{
	if(l==r)
	{
		id[l]=k;
		vis[a[l]]=1;
		while(vis[mex]) mex++;
		minn[k]=maxn[k]=sumk[k]=mex;
		return;
	}
	int mid=(l+r)>>1;
	build(k<<1,l,mid);
	build(k<<1|1,mid+1,r);
	up(k);
}

inline void update(int k,int l,int r,int ql,int qr,int x,int tim)
{
	if(maxn[k]<=x) return;
	if(ql<=l&&r<=qr&&minn[k]==maxn[k])
	{
		downn(k,l,r,x-maxn[k],1ll*(maxn[k]-x)*tim);
		return;
	}
	int mid=(l+r)>>1;
	down(k,l,r,mid);
	if(ql<=mid) update(k<<1,l,mid,ql,qr,x,tim);
	if(qr>mid) update(k<<1|1,mid+1,r,ql,qr,x,tim);
	up(k);
}

inline ll query(int k,int l,int r,int ql,int qr,int x)
{
	if(ql<=l&&r<=qr) return 1ll*sumk[k]*x+sumb[k];
	int mid=(l+r)>>1;
	down(k,l,r,mid);
	ll ans=0;
	if(ql<=mid) ans+=query(k<<1,l,mid,ql,qr,x);
	if(qr>mid) ans+=query(k<<1|1,mid+1,r,ql,qr,x);
	return ans;
}

int main()
{
	type=read(),n=read();
	for(int i=1;i<=n;i++)
	{
		a[i]=read();
		if(a[i]>n+1) a[i]=n+1;
	}
	for(int i=0;i<=n+1;i++) last[i]=n+1;
	for(int i=n;i>=1;i--) nxt[i]=last[a[i]],last[a[i]]=i;
	Q=read();
	for(int i=1;i<=Q;i++)
	{
		int l=read(),r=read();
		q[++numq]=Query(r,l,r,i,1);
		q[++numq]=Query(l-1,l,r,i,-1);
	}
	sort(q+1,q+numq+1);
	build(1,1,n);
	int tmp=1;
	while(tmp<=numq&&(!q[tmp].pos)) tmp++;
	for(int tim=1;tim<=n;tim++)
	{
		while(tmp<=numq&&q[tmp].pos==tim)
		{
			Ans[q[tmp].id]+=1ll*q[tmp].opt*query(1,1,n,q[tmp].l,q[tmp].r,tim);
			tmp++;
		}
		if(tim+1<=nxt[tim]-1) update(1,1,n,tim+1,nxt[tim]-1,a[tim],tim);
		update(1,1,n,tim,tim,0,tim);
	}
	for(int i=1;i<=Q;i++)
		printf("%lld\n",Ans[i]);
	return 0;
}
/*
0
5
1 0 1 0 2
5
2 2
2 3
1 2
2 4
1 5
*/
/*
0
10
2 4 1 10794 0 0 5 11706 2 21850 
1
3 9
*/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值