【CF1601C】Optimal Insertion(结论)

首先容易知道 b b b 序列在 a a a 中的顺序肯定是从小到大排序的,否则交换 b b b 中逆序的肯定会更优。

接下来是一个很鬼的结论。

p i p_i pi 表示考虑 b i b_i bi 插入 a a a 序列中,最优位置是插在 a p i − 1 a_{p_i-1} api1 a p i a_{p_i} api 之间,注意对于同一个 i i i p i p_i pi 可能有多个。

结论:若 b j < b i b_j<b_i bj<bi,对于多个 p j p_j pj 中的任意一个,均存在 p i p_i pi 使得 p j ≤ p i p_j\leq p_i pjpi

证明:

先考虑 “最优位置” 怎么求得,对于 b j b_j bj,我们把 a a a 中小于 b j b_j bj 的数看成 0 0 0,大于 b j b_j bj 的数看成 1 1 1,那么插入 b j b_j bj 位置在 p j p_j pj 的贡献即为 a 1 , ⋯   , a p j − 1 a_1,\cdots,a_{p_j-1} a1,,apj1 1 1 1 的个数加上 a p j , ⋯   , a n a_{p_j},\cdots,a_n apj,,an 0 0 0 的个数。

这里为了证明的直观,我们没有考虑 a a a 中有和 b j b_j bj 相等的数的情况,考虑上这种情况的证明方法也是一样的。

考虑反证法,设 p i < p j p_i<p_j pi<pj,把序列 a a a 分成三段: A = [ 1 , p i − 1 ] A=[1,p_i-1] A=[1,pi1] B = [ p i , p j − 1 ] B=[p_i,p_j-1] B=[pi,pj1] C = [ p j , n ] C=[p_j,n] C=[pj,n]

在这里插入图片描述

注意到从 b j b_j bj 变为 b i b_i bi 后, a a a 序列中只有会 1 1 1 变成 0 0 0

A 0 , A 1 A_0,A_1 A0,A1 表示 A A A 中原来 0 , 1 0,1 0,1 的个数, A 0 ′ , A 1 ′ A'_0,A'_1 A0,A1 表示从 b j b_j bj 变为 b i b_i bi A A A 0 , 1 0,1 0,1 的个数。 B , C B,C B,C 同理定义。

那么 p j p_j pj 的贡献为: A 1 + B 1 + C 0 A_1+B_1+C_0 A1+B1+C0

由于 p j p_j pj b j b_j bj 的最优位置,所以可知把 p j p_j pj 变成 p i p_i pi 所在位置不会更优,于是: ( A 1 + B 1 + C 0 ) − ( A 1 + B 0 + C 0 ) ≤ 0 (A_1+B_1+C_0)-(A_1+B_0+C_0)\leq 0 (A1+B1+C0)(A1+B0+C0)0,即 B 1 − B 0 ≤ 0 B_1-B_0\leq 0 B1B00

p i p_i pi 的贡献为: A 1 ′ + B 0 ′ + C 0 ′ A_1'+B_0'+C_0' A1+B0+C0

若把 p i p_i pi 调整到 p j p_j pj 所在位置,贡献为: A 1 ′ + B 1 ′ + C 0 ′ A_1'+B_1'+C_0' A1+B1+C0,与调整前的贡献相减得到 ( A 1 ′ + B 1 ′ + C 0 ′ ) − ( A 1 ′ + B 0 ′ + C 0 ′ ) = B 1 ′ − B 0 ′ (A_1'+B_1'+C_0')-(A_1'+B_0'+C_0')=B_1'-B_0' (A1+B1+C0)(A1+B0+C0)=B1B0,而 B 1 ′ − B 0 ′ ≤ B 1 − B 0 ≤ 0 B_1'-B_0'\leq B_1-B_0\leq 0 B1B0B1B00,所以把 p i p_i pi 调整到 p j p_j pj 所在位置肯定不劣,所以肯定存在 p i ≥ p j p_i\geq p_j pipj

那么我们可以对于每一个 b i b_i bi 直接把它插到 p i p_i pi 中去,根据这个结论,这样的插法肯定也是满足按 b i b_i bi 从小到大排序的。

更加严谨地说,按这种插法首先保证了 b b b a a a 之间的逆序对最少,而根据结论可知此时 b b b b b b 之间的逆序对为 0 0 0,也取到了下界,而 a a a a a a 之间的逆序对是本来就固定了的。

现在的问题相当于如何快速求每个 b i b_i bi 的最优位置和它的逆序对贡献。

使用线段树维护 [ 1 , i − 1 ] [1,i-1] [1,i1] 1 1 1 的个数 + [ i , n ] [i,n] [i,n] 0 0 0 的个数的最小值即可。

#include<bits/stdc++.h>

#define N 1000010
#define ll long long
#define fi first
#define se second
#define pii pair<int,int>
#define mk(a,b) make_pair(a,b)

using namespace std;

inline int read()
{
	int x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x*f;
}

int T,n,m,nn,a[N],b[N],bb[N<<1];

namespace AA
{
	int c[N<<1],lowbit[N<<1];
	void init()
	{
		const int t=2000000;
		for(int i=1;i<=t;i++) lowbit[i]=(i&-i);
	}
	void add(int x,int y)
	{
		for(;x<=nn;x+=lowbit[x]) c[x]+=y;
	}
	int query(int x)
	{
		int ans=0;
		for(;x;x-=lowbit[x]) ans+=c[x];
		return ans;
	}
	ll work()
	{
		for(int i=1;i<=nn;i++) c[i]=0;
		ll ans=0;
		for(int i=n;i>=1;i--)
		{
			ans+=query(a[i]-1);
			add(a[i],1);
		}
		return ans;
	}
}

namespace BA
{
	int minn[N<<2],lazy[N<<2];
	void downn(int k,int v)
	{
		minn[k]+=v,lazy[k]+=v;
	}
	void down(int k)
	{
		if(lazy[k])
		{
			downn(k<<1,lazy[k]);
			downn(k<<1|1,lazy[k]);
			lazy[k]=0;
		}
	}
	void up(int k)
	{
		minn[k]=min(minn[k<<1],minn[k<<1|1]);
	}
	void build(int k,int l,int r)
	{
		lazy[k]=0;
		if(l==r)
		{
			minn[k]=l-1;
			return;
		}
		int mid=(l+r)>>1;
		build(k<<1,l,mid);
		build(k<<1|1,mid+1,r);
		up(k);
	}
	void update(int k,int l,int r,int ql,int qr,int v)
	{
		if(ql<=l&&r<=qr)
		{
			downn(k,v);
			return;
		}
		down(k);
		int mid=(l+r)>>1;
		if(ql<=mid) update(k<<1,l,mid,ql,qr,v);
		if(qr>mid) update(k<<1|1,mid+1,r,ql,qr,v);
		up(k);
	}
	pii p[N];
	ll work()
	{
		for(int i=1;i<=n;i++)
			p[i]=mk(a[i],i);
		sort(p+1,p+n+1);
		sort(b+1,b+m+1);
		build(1,1,n+1);
		ll ans=0;
		int tmp1=1,tmp2=1;
		for(int i=1;i<=m;i++)
		{
			while(tmp2<=n&&p[tmp2].fi<=b[i])
			{
				update(1,1,n+1,p[tmp2].se+1,n+1,-1);
				tmp2++;
			}
			while(tmp1<=n&&p[tmp1].fi<b[i])
			{
				update(1,1,n+1,1,p[tmp1].se,1);
				tmp1++;
			}
			ans+=minn[1];
		}
		return ans;
	}
}

int main()
{
	AA::init();
	T=read();
	while(T--)
	{
		n=read(),m=read();
		for(int i=1;i<=n;i++) bb[i]=a[i]=read();
		for(int i=1;i<=m;i++) bb[n+i]=b[i]=read();
		sort(bb+1,bb+n+m+1);
		nn=unique(bb+1,bb+n+m+1)-bb-1;
		for(int i=1;i<=n;i++) a[i]=lower_bound(bb+1,bb+nn+1,a[i])-bb;
		for(int i=1;i<=m;i++) b[i]=lower_bound(bb+1,bb+nn+1,b[i])-bb;
		printf("%lld\n",AA::work()+BA::work());
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值