蒟蒻的学习笔记
太简单?(我太弱了。。。)跳转至数论学习笔记(中)
一、余数和取模
这是小学的除法式子:a÷b=c......d(b≠0)
则d为a除以b的余数(remainder),c为a÷b的整数部分,即c=[a/b],怎么样?简单吧!
则有常用性质
$$a=b*c+d$$
=====================================================================================================
我们用a mod b表示a除以b的余数(modulo),即a mod b=d(b≠0)
易得性质:
结合律:(a mod c+b mod c)mod c=(a+b)mod c 和 (a mod c*b mod c)mod c=(a*b)mod c (c≠0)
分配律:k(a mod b)=(k*a)mod(k*b) (k*b≠0)
二、因数倍数
若a mod b=0,则称a整除b,表示为a|b
定义a为b的因数(divisor),b为a的倍数(multiple)。
则1是任何正整数的因数,a是a的最大因数也是a的最小倍数
易得性质:
1.若a|b,则a+k*b|b(k为整数),a*c|b*c(c为整数)
2若a|b,c|d,则a*c|b*d;
=====================================================================================================
若x同时为a和b的因数,则x为a和b的公因数,易知任何数的最小公因数是1
若x同时为a和b的倍数,则x为a和b的公因数,易知没有最大公倍数(无限)
把a,b的最大公因数记作gcd(a,b) (greatest common divisor)
把a,b的最小公倍数记作lcm(a,b) (lowest common multiple)
若gcd(a,b)=1,则称a,b互质
1和所有数互质,两个质数必定互质
重要结论:gcd(a,b)*lcm(a,b)=a*b 证明如下:
设gcd(a,b)=x,lcm(a,b)=y,令mx=a,nx=b(m,n为正整数,m,n互质)
$$\therefore m|a,n|b,x|a,x|b \therefore m*n*x|a*b$$
因为x是最大的,所以n,m必定是最小的,所以y=m*n*x(感性