小视野链接
洛谷链接
蒟蒻做2-sat的第一题
关于2-sat,可以看看这位大佬的博客
题意
数轴上放 n n 个点,第个坐标可以为 xi x i 或者 yi y i ,最大化两两相邻点间的最小距离。
题解
首先二分答案,使两点之间距离大于
mid
m
i
d
,这时对于一个点
i
i
(坐标为),不能同时取
i
i
和坐标大于小于
x+mid−1
x
+
m
i
d
−
1
的点。这就是典型的2-set问题了。但是如果暴力建边,显然会炸。注意到离散化之后连的边是两个区间,于是可以用线段树优化建图。具体细节见代码。
如果没做过线段树优化建图的题,建议先做做hdu5669。(此题我被卡常了qwq)
代码
//#pragma GCC optimize(3)
#include<iostream>
#include<iomanip>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<string>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#define ll long long
#define db double
#define inf 20001
#define INF (int)2e9
#define mod (ll)(1e9+7)
#define pi acos(-1)
#define mxbit 30
#define rd(n) {n=0;char ch;int f=0;do{ch=getchar();if(ch=='-'){f=1;}}while(ch<'0'||ch>'9');while('0'<=ch&&ch<='9'){n=(n<<1)+(n<<3)+ch-48;ch=getchar();}if(f)n=-n;}
using namespace std;
int n;
struct data{
int x,id;
data(){}
data(int xx,int ii){
x=xx,id=ii;
}
}a[inf];
int id[inf];
bool operator<(data _1,data _2){
return _1.x<_2.x;
}
struct edge{
int y,nxt;
edge(){}
edge(int yy,int nn){
y=yy,nxt=nn;
}
}e[inf*4*4];
int head[inf*8],ecnt;
void addedge(int x,int y){
ecnt++;
e[ecnt]=edge(y,head[x]);
head[x]=ecnt;
return;
}
int scc[inf*8],dfn[inf*8],low[inf*8];
int sta[inf*8],top,T,pcnt;
void dfs(int u){
dfn[u]=low[u]=++T;
sta[++top]=u;
for (int i=head[u];i;i=e[i].nxt){
int v=e[i].y;
if (!dfn[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}
else if (!scc[v]){
low[u]=min(low[u],dfn[v]);
}
}
if (dfn[u]==low[u]){
++pcnt;
while (top){
scc[sta[top]]=pcnt;
if (sta[top]==u){
top--;
break;
}
top--;
}
}
return;
}
bool two_sat(void){
for (int i=0;i<2*n;i++){
if (!dfn[i]){
dfs(i);
}
}/*
for (int i=0;i<2*n;i++){
for (int j=head[i];j;j=e[j].nxt){
printf("%d ",e[j].y);
}
puts("");
}
system("pause");*/
for (int i=0;i<2*n;i++){
if (scc[i]==scc[id[a[i].id^1]]){
return 0;
}
}
return 1;
}
void ST_build(int u,int l,int r){
if (l==r){
addedge(u+2*n-1,id[a[l].id^1]);
return;
}
int mid=(l+r)/2;
ST_build(u*2,l,mid);
ST_build(u*2+1,mid+1,r);
addedge(u+2*n-1,u*2+2*n-1);
addedge(u+2*n-1,u*2+1+2*n-1);
return;
}
void ST_link(int u,int l,int r,int L,int R,int p){
if (R<L){
return;
}
if (L<=l && r<=R){
addedge(p,u+n*2-1);
return;
}
int mid=(l+r)/2;
if (L<=mid){
ST_link(u*2,l,mid,L,R,p);
}
if (R>mid){
ST_link(u*2+1,mid+1,r,L,R,p);
}
return;
}
void clear(void){
memset(head,0,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(scc,0,sizeof(scc));
memset(sta,0,sizeof(sta));
top=T=ecnt=pcnt=0;
return;
}
bool check(int k){
clear();
ST_build(1,0,2*n-1);
for (int i=0;i<n*2;i++){
int fr=lower_bound(a,a+n*2,data(a[i].x-k+1,0))-a;
int bk=upper_bound(a,a+n*2,data(a[i].x+k-1,0))-a-1;
ST_link(1,0,2*n-1,max(fr,0),i-1,i);
ST_link(1,0,2*n-1,i+1,min(bk,n*2-1),i);
}
return two_sat();
}
int main(){
rd(n)
int maxp=0;
for (int i=0;i<n*2;i++){
rd(a[i].x)
a[i].id=i;
maxp=max(maxp,a[i].x);
}
sort(a,a+n*2);
for (int i=0;i<n*2;i++){
id[a[i].id]=i;
}
int l=0,r=maxp,ans=0;
while (l<=r){
int mid=(l+r)/2;
if (check(mid)){
ans=mid;
l=mid+1;
}
else{
r=mid-1;
}
}
printf("%d\n",ans);
return 0;
}