【国集作业】【ARC069F】Flags【2-sat】

小视野链接
洛谷链接
蒟蒻做2-sat的第一题
关于2-sat,可以看看这位大佬的博客

题意

数轴上放 n n 个点,第i个坐标可以为 xi x i 或者 yi y i ,最大化两两相邻点间的最小距离。

题解

首先二分答案,使两点之间距离大于 mid m i d ,这时对于一个点 i i (坐标为x),不能同时取 i i 和坐标大于xmid+1小于 x+mid1 x + m i d − 1 的点。这就是典型的2-set问题了。但是如果暴力建边,显然会炸。注意到离散化之后连的边是两个区间,于是可以用线段树优化建图。具体细节见代码。
如果没做过线段树优化建图的题,建议先做做hdu5669。(此题我被卡常了qwq)

代码
//#pragma GCC optimize(3)
#include<iostream>
#include<iomanip>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set> 
#include<map>
#include<string>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#define ll long long
#define db double
#define inf 20001
#define INF (int)2e9 
#define mod (ll)(1e9+7)
#define pi acos(-1)
#define mxbit 30
#define rd(n) {n=0;char ch;int f=0;do{ch=getchar();if(ch=='-'){f=1;}}while(ch<'0'||ch>'9');while('0'<=ch&&ch<='9'){n=(n<<1)+(n<<3)+ch-48;ch=getchar();}if(f)n=-n;}
using namespace std;
int n;

struct data{
    int x,id;
    data(){}
    data(int xx,int ii){
        x=xx,id=ii;
    }
}a[inf];
int id[inf];

bool operator<(data _1,data _2){
    return _1.x<_2.x;
}

struct edge{
    int y,nxt;
    edge(){}
    edge(int yy,int nn){
        y=yy,nxt=nn;
    }
}e[inf*4*4];
int head[inf*8],ecnt;

void addedge(int x,int y){
    ecnt++;
    e[ecnt]=edge(y,head[x]);
    head[x]=ecnt;
    return;
}

int scc[inf*8],dfn[inf*8],low[inf*8];
int sta[inf*8],top,T,pcnt;

void dfs(int u){
    dfn[u]=low[u]=++T;
    sta[++top]=u;
    for (int i=head[u];i;i=e[i].nxt){
        int v=e[i].y;
        if (!dfn[v]){
            dfs(v);
            low[u]=min(low[u],low[v]);
        }
        else if (!scc[v]){
            low[u]=min(low[u],dfn[v]);
        }
    }
    if (dfn[u]==low[u]){
        ++pcnt;
        while (top){
            scc[sta[top]]=pcnt;
            if (sta[top]==u){
                top--;
                break;
            }
            top--;
        }
    }
    return;
}

bool two_sat(void){
    for (int i=0;i<2*n;i++){
        if (!dfn[i]){
            dfs(i);
        }
    }/*
    for (int i=0;i<2*n;i++){
        for (int j=head[i];j;j=e[j].nxt){
            printf("%d ",e[j].y);
        }
        puts("");
    }
    system("pause");*/
    for (int i=0;i<2*n;i++){
        if (scc[i]==scc[id[a[i].id^1]]){
            return 0;
        }
    }
    return 1;
}

void ST_build(int u,int l,int r){
    if (l==r){
        addedge(u+2*n-1,id[a[l].id^1]);
        return;
    }
    int mid=(l+r)/2;
    ST_build(u*2,l,mid);
    ST_build(u*2+1,mid+1,r);
    addedge(u+2*n-1,u*2+2*n-1);
    addedge(u+2*n-1,u*2+1+2*n-1);
    return;
}

void ST_link(int u,int l,int r,int L,int R,int p){
    if (R<L){
        return;
    }
    if (L<=l && r<=R){
        addedge(p,u+n*2-1);
        return;
    }
    int mid=(l+r)/2;
    if (L<=mid){
        ST_link(u*2,l,mid,L,R,p);
    }
    if (R>mid){
        ST_link(u*2+1,mid+1,r,L,R,p);
    }
    return;
}

void clear(void){
    memset(head,0,sizeof(head));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(scc,0,sizeof(scc));
    memset(sta,0,sizeof(sta));
    top=T=ecnt=pcnt=0;
    return;
}

bool check(int k){
    clear();
    ST_build(1,0,2*n-1);
    for (int i=0;i<n*2;i++){
        int fr=lower_bound(a,a+n*2,data(a[i].x-k+1,0))-a;
        int bk=upper_bound(a,a+n*2,data(a[i].x+k-1,0))-a-1;
        ST_link(1,0,2*n-1,max(fr,0),i-1,i);
        ST_link(1,0,2*n-1,i+1,min(bk,n*2-1),i);
    }
    return two_sat();
}

int main(){
    rd(n)
    int maxp=0;
    for (int i=0;i<n*2;i++){
        rd(a[i].x)
        a[i].id=i;
        maxp=max(maxp,a[i].x);
    }
    sort(a,a+n*2);
    for (int i=0;i<n*2;i++){
        id[a[i].id]=i;
    }
    int l=0,r=maxp,ans=0;
    while (l<=r){
        int mid=(l+r)/2;
        if (check(mid)){
            ans=mid;
            l=mid+1;
        }
        else{
            r=mid-1;
        }
    }
    printf("%d\n",ans);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值