题目链接:BZOJ3998
解法:后缀自动机+树形dp
对串 str s t r 构造后缀自动机,对于 T=1 T = 1 ,设 cnti−1 c n t i − 1 为某个串在其之后的串中出现的次数(具体讲不清,看代码),对于 T=1 T = 1 ,置所有 cnt c n t 为 1 1 。 为节点 i i 在后缀自动机中的子树大小,dp出 ,然后按二叉搜索树的查询方式在后缀自动机上查询第 K K <script type="math/tex" id="MathJax-Element-477">K</script> 小即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int N,T,K,root,lst,tot,dis[1000000],cnt[1000000],fail[1000000],son[1000000][26],siz[1000000],b[1000000],pos[1000000];
char str[500001];
void insert(int h){
int p=lst,np=++tot;dis[lst=np]=dis[p]+(cnt[np]=1);
while(!son[p][h]&&p)son[p][h]=np,p=fail[p];
if(!p)fail[np]=1;else{
int q=son[p][h];
if(dis[q]==dis[p]+1)fail[np]=q;else{
int nq=++tot;dis[nq]=dis[p]+1;for(int i=0;i<26;++i)son[nq][i]=son[q][i];fail[nq]=fail[q],fail[q]=fail[np]=nq;
while(son[p][h]==q)son[p][h]=nq,p=fail[p];
}
}
}
void solve(int x,int k){
if(k<=cnt[x])return;
k-=cnt[x];
int i=0;while(k>siz[son[x][i]])k-=siz[son[x][i++]];
putchar(i+'a');solve(son[x][i],k);
}
int main(){
lst=root=++tot;scanf("%s",str+1),N=strlen(str+1),scanf("%d%d",&T,&K);for(int i=1;i<=N;++i)insert(str[i]-'a');
for(int i=1;i<=tot;++i)++b[dis[i]];for(int i=1;i<=tot;++i)b[i]+=b[i-1];for(int i=1;i<=tot;++i)pos[b[dis[i]]--]=i;
for(int i=tot;i;--i)if(T==1)cnt[fail[pos[i]]]+=cnt[pos[i]];else cnt[pos[i]]=1;cnt[root]=0;
for(int i=tot;i;--i){siz[pos[i]]=cnt[pos[i]];for(int j=0;j<26;++j)siz[pos[i]]+=siz[son[pos[i]][j]];}
if(siz[1]<K)puts("-1");else solve(root,K);
}