Machine Learning Techniques 笔记:2-13 Deep Learning

类神经网络有一层一层的神经元,它们的作用就是帮我们萃取出资料中的模式,把这些模式当作特征。我们又怎么决定神经元的权重呢?我们有backprop这个核心的工具,它可以帮助我们计算梯度,就可以用之前学过的梯度下降法来更新每个神经元的权重,所以整个类神经元的核心就是一层层的神经元,以及它们的连接关系。

那么,我们用多少个神经元,多少层?神经元的结构又将如何?

类神经网络中决定使用哪种结构是非常核心,但又是非常困难的问题。

浅浅的,简单结构:效率高。在浅浅的有限层里面,放置足够多的神经元,理论上也可以做很多事情。

深深的,复杂结构:花很多的力气去训练,如果放很多的层,理论上可以做很多的事情。

Deeplearning:在语音识别,图像识别的应用中很有效率。

比如做手写辨识:辨识1或5,首先萃取各个不同部位的特征,大概写了哪些短短的笔画,将这些短短的笔画在组合成复杂的笔画,最后才进行辨识。 每一层都可以代表不同的物理意义。

越多层就可以表示越多不同的特征,每一层做的事情就会更加简单。

如果中间只有一层时,则这一层做的事情就会很多。

每一层只做一点点事情,只要有足够多的层,到了最后,逐步做到复杂的事情。

Deep Learning Challenges:比较难于确定网络的架构,模型的复杂度比较高,容易困在局部最佳点,计算复杂度比较高,怎么办?

解决结构上的问题,除了用validation以外,还要结合研究者对于问题本身的理解。如类神经网络,只连接附近的像素点,如果距离太远,则不会被连接。用附近的像素,来决定高维的事情

模型复杂度:用足够多的data,或者用regulization。 dropout:神经元坏掉的时候,还可以得到很好的输出。

困难的优化问题:起始点的选择非常重要,谨慎选择初始点,而不是随机选择。避免局部最优

计算复杂度:更加先进的硬件架构,如GPU

更重要的突破:regulization,与pretraing,使得deep learning取得很大的进步。


权重逐层决定。always 通过backprop逐步优化权重。


第一层:由原来的像素变成简单的笔画,而不是什么样的数字,以及怎么做分类。

基于刚才的简单架构,我们如何做pre-train,帮我们的权重设定初始值呢?

权重的意义:在类神经网络及深度学习中,权重代表了我们该如何做特征转换,或者说如何让我们的资料换成不同的表现形式encoding,最后再看用什么样的学习方式。即做完pre-train之后,是不清楚资料在后面将如何被使用的,即不知道第2,3,……层 之后发生的事情。

这样:第一层只需要保留原始资料的特征即可,保持足够的代表性,表现力,可以轻易的重建原始data,information pre-serving。

d个输入----》d个输出,使得转换前后,结果类似

autoencoder:原来,d个维度,中间:d quota,输出:d个维度, 逼近没有做转换的data。

蓝色的w,编码; 右边红色的w,解码

今天的identity function,完全不做任何转换,写个programing就可以完成,为什么还要逼近它,有什么好处?

如果今天真的能得到这些事情,必然依赖于之前的hidden structure(比如数字识别时,数字的笔画),如果通过这种学习方式,得到潜藏的结构,是否可以用这些潜藏的结构做特征转换?

这些潜藏的结构,告诉我们用何种结构能够更加有效的表示原始资料。

用unsupervised learning,看那边比较稠密,那边比较稀疏,从而得知data 落在编码器比较稠密的地方,还是稀疏的地方?

从而选出那些是典型的点,那些是离群点?

d quota < d,原来的data可以映射到低维空间

做autoencoder:不需要看label y,只需要知道大部分x的特征长什么样就可

简单的autoencoder:输入输出神经元数量相同,中间稍微少一点,加上一些regulization等,用没有label的点学习,会得到一些权重,这些权重可能会让我们把encoding,decoding的动作做的很好。在deep learning中,只是把它当作pre-training的步骤

一个合理的pre-training是采用autoencoder

两两交接处,需要计算的effort。

如何用regulizaration控制模型的复杂度?

加上一些条件,少一些限制条件?

overfit的原因: 杂讯越多,资料越少,越容易overfit

当模型复杂度与资料数量确定是,能够做的事情只有如何防堵杂讯。

如果:datacleaning,丢掉杂讯大的资料,会让结果更好

另一种方式,我们往data里面增加杂讯?

一个好的autoencoder,应该在给他data后,使得输入与输出看起来差不多。如果我们给它一些难度(data+noise),如果足够robust,有污染的input,仍然能够得到pure output。

输入:紫色的x quota,输入红色的pure x

如:扫描软件:输入有变形,但输出已经得到修正

用人工的杂讯告诉机器,我需要的模型长什么样子

如果设计人工的资料,hint:也是一种regularization,让机器知道,到底想让哪一类资料处理的更好。

Hyperbolic Tangent 双曲正切

拿掉第0维,假设中间的d quota 小于d, d quota 为压缩的维度

Ein:看过的data中,输入x 与 输出x的square error。

让I-Gama,0越多越好

最佳化的gama:最多只能塞dquota个1,其它均为0

最小化留下来的维度 ===最大化拿掉的维度

PCA:data 投影到某一方向上后,在该方向上data的变化量越大越好

v的长度为1,得到的lamada即为最佳解



Exploring an advanced state of the art deep learning models and its applications using Popular python libraries like Keras, Tensorflow, and Pytorch Key Features • A strong foundation on neural networks and deep learning with Python libraries. • Explore advanced deep learning techniques and their applications across computer vision and NLP. • Learn how a computer can navigate in complex environments with reinforcement learning. Book Description With the surge of Artificial Intelligence in each and every application catering to both business and consumer needs, Deep Learning becomes the prime need of today and future market demands. This book explores deep learning and builds a strong deep learning mindset in order to put them into use in their smart artificial intelligence projects. This second edition builds strong grounds of deep learning, deep neural networks and how to train them with high-performance algorithms and popular python frameworks. You will uncover different neural networks architectures like convolutional networks, recurrent networks, long short term memory (LSTM) and solve problems across image recognition, natural language processing, and time-series prediction. You will also explore the newly evolved area of reinforcement learning and it will help you to understand the state-of-the-art algorithms which are the main engines behind popular game Go, Atari, and Dota. By the end of the book, you will be well versed with practical deep learning knowledge and its real-world applications What you will learn • Grasp mathematical theory behind neural networks and deep learning process. • Investigate and resolve computer vision challenges using convolutional networks and capsule networks. • Solve Generative tasks using Variational Autoencoders and Generative Adversarial Nets (GANs). • Explore Reinforcement Learning and understand how agents behave in a complex environment. • Implement complex natural language processing tasks using recurrent networks (LSTM, GRU), and attention models. Who This Book Is For This book is for Data Science practitioners, Machine Learning Engineers and Deep learning aspirants who have a basic foundation of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值