# SRM 400 DIV2 

11 篇文章 0 订阅 #include < iostream > #include
< string > #include
< vector > #include
< set > #include
< algorithm > #include
< memory.h > #include
< cmath > #include
< cstdio > using   namespace  std;  long   long  num;  bool   is ( int  p, int  q)  { long long temp=1; for (int i=0;i!=q;++i) temp
*=(long long)p; if (temp!=num) return false; for (int i=2;i*i<=p;++i) if (p%i==0return false; return true; }   class  StrongPrimePower { public: vector
<int> baseAndExponent(string n)  { vector
<int> ans; sscanf(n.c_str(),
"%lld",&num); double f=num;  for (int i=2;i!=65;++i){ int p=pow(f,(double)1/i)+0.5;  if (is(p,i)){ ans.push_back(p); ans.push_back(i); return ans; } } return ans; } }
;

### Problem Statement

NOTE: This problem statement contains superscripts that may not display properly if viewed outside of the applet.

A number which can be represented as pq, where p is a prime number and q is an integer greater than 0, is called a prime power. If q is larger than 1, we call the number a strong prime power. You are given an integer n. If n is a strong prime power, return an vector <int> containing exactly two elements. The first element is p and the second element is q. If n is not a strong prime power, return an empty vector <int>.

### Definition

 Class: StrongPrimePower Method: baseAndExponent Parameters: string Returns: vector Method signature: vector baseAndExponent(string n) (be sure your method is public)

### Constraints

- n will contain digits ('0' - '9') only.
- n will represent an integer between 2 and 10^18, inclusive.
- n will have no leading zeros.

### Examples

0)

 "27"
Returns: {3, 3 }
 27 = 33. This is a strong prime power.
1)

 "10"
Returns: { }
 10 = 2 * 5. This is not a strong prime power.
2)

 "7"
Returns: { }
 A prime number is not a strong prime power.
3)

 "1296"
Returns: { }
4)

 "576460752303423488"
Returns: {2, 59 }
5)

 "999999874000003969"
Returns: {999999937, 2 }

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

09-13 131
09-03 97  06-01 435
11-25 24
03-26 40
02-22 265
07-05 32
09-14 393
04-16 171
11-28 525
08-13 183
10-04 32
01-08 24
01-08 34
02-12 640
04-13 509
08-13 815
10-11 81
04-22 160 点击重新获取   扫码支付  余额充值