leetCode算法练习(一)

本文记录了作者初次在LeetCode上刷题的体验,首题是"俩数之和"。作者从最初的暴力求解(O(n^2))到学习使用哈希表优化解法(O(n)),并尝试用C++和Python实现。通过对比和学习不同的解法,作者收获颇丰。
摘要由CSDN通过智能技术生成

       鉴于数据结构和算法的重要性,近期我接触了一下leetCode这个网站,发现很多人都在这个网站刷算法题,提高算法能力。本人才疏学浅,记录一下第一次刷LeetCode题的经过。

       LeetCode网站,第一个算法题是“俩数之和”,算是最简单的一道题了。首先想到的就是俩个for循环,这个暴力解法,代码如下:

vector<int> twoSum(vector<int>& nums, int target)
{
	vector<int> nRet;
	vector<int>::iterator it, it2;
	for (it = nums.begin(); it != nums.end(); it++)
	{
		for (it2 = nums.begin(); it2 != nums.end(); it2++)
		{
			if (*it + *it2 == target && *it < *it2)
			{
				int a, b;
				a = it - nums.begin();
				b = it2 - nums.begin();
				nRet.push_back(a);
				nRet.push_back(b);
				break;
			}
		}
	}
	return nRet;
}

       运行之后,发现运行耗时比较长,有百分之九十以上的都比这个算法快,感觉很汗颜。不过也是,该方法简单但是时间复杂度为O(n^2^),空间复杂度为O(1);运行速度慢。

       然后就看了一下网上大神的解法,发现用hash表来解,时间复杂度会降到O(n),运行快多了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值