多需求响应与电动汽车在微网虚拟电厂日前优化调度的MATLAB代码,多种需求响应与电动汽车的微网优化调度模型研究及实践

MATLAB代码:含多种需求响应及电动汽车的微网/虚拟电厂日前优化调度
关键词:需求响应 空调负荷 电动汽车 微网优化调度 虚拟电厂调度
参考文档:《计及电动汽车和需求响应的多类电力市场下虚拟电厂竞标模型》参考其电动汽车模型以及需求响应模型;
《Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach》参考其空调部分的数学模型和参数
仿真平台:MATLAB+CPLEX
主要内容:代码主要做的是一个微网/虚拟电厂的日前优化调度模型,在日前经济调度模型中,我们加入了电动汽车模型,且电动汽车模型考虑了其出行规律以及充放电规律,更加符合实际情况,除此之外,程序里还考虑了多种类型的需求响应资源,如可中断负荷资源,并加入了空调负荷的需求响应调控,充分利用热力学原理以及能量守恒,对空调机组实行最优能耗曲线控制策略,除此之外,模型中还考虑了燃气轮机、储能的单元,非常全面且实用,是研究微网和虚拟电厂的必备程序。

ID:77100702036979811

综合能源优化


MATLAB代码:含多种需求响应及电动汽车的微网 虚拟电厂日前优化调度

需求响应和电动汽车已经成为电力系统中的重要组成部分。这两个领域的研究为优化调度和资源管理提供了新的机会。本文基于MATLAB+CPLEX仿真平台,设计了一个微网虚拟电厂的日前优化调度模型,该模型不仅考虑了电动汽车的行程和充放电规律,还加入了多种类型的需求响应资源和空调负荷的需求响应调控。

在虚拟电厂的竞标模型中,我们参考了《计及电动汽车和需求响应的多类电力市场下虚拟电厂竞标模型》的电动汽车模型以及需求响应模型。通过这些模型,我们能够更准确地预测电动汽车的充电需求和需求响应资源的可用性,从而实现更精细化和灵活化的调度策略。

此外,在空调部分的数学模型和参数选择上,我们参考了《Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach》,借鉴了该文献中的数学模型和参数,从而能够更好地建立空调负荷的需求响应调控模型。

在我们的代码中,为了最大限度地减少能耗,并实现最优能耗曲线控制策略,我们采用了热力学原理和能量守恒原则,对空调机组进行调控。通过这种策略,我们能够在保证用户舒适度的同时,实现对空调机组的最佳控制,进一步降低能耗。

此外,在模型的设计中,我们还考虑了燃气轮机和储能设备的整合,从而进一步提高虚拟电厂的能源利用效率。通过将这些能源单元与需求响应和电动汽车模型相结合,我们能够更全面地考虑不同类型的能源资源,并实现能源的高效管理。

总而言之,我们的代码实现了一个全面且实用的微网虚拟电厂的日前优化调度模型。通过考虑电动汽车模型、多种类型的需求响应资源和空调负荷的需求响应调控,我们能够更准确地预测能源需求和资源的可用性,并实现对能源的精细化管理。该模型对于研究微网和虚拟电厂具有重要的参考价值。

【相关代码,程序地址】:http://fansik.cn/702036979811.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值