WORK-Nov.

一不小心,一年快要结束了,一想到下一个月就要发年终奖了,心中有点儿小期待,我的第一个年终奖会是多少呢?

最近开始决定写专栏,但是写了一篇后,就搁置了两星期,还没有从专栏中找到属于自己的那份冲动。当然,我可以冠冕堂皇的说,最近工作有点儿忙(真的忙,赶 demo \text{demo} demo),比较累,所以晚上回来没有精力去写,但是总不能一直都这样吧,我应该努力去寻找写专栏的兴趣点儿与冲动。

前天下午出去团建,折腾了两天,回来的时候累得要死,但是吹着海风真的很爽,当然,吃着海鲜更爽。和同事三个人还有我对象半夜出来打牙祭,找到一个吃海鲜的地方,点了三只梭子蟹,肉多的狠,吃着贼爽,可是结账的时候,才发现三只梭子蟹竟然要了四百多,这时候才是真的酸爽到炸,加上杂七杂八的的八百块钱。

同事说好的 AA \text{AA} AA,但是当我打算出我那二分之一的时候,其他两个同事一脸诧异的说你出那么多干嘛?原来,我对象不算在 AA \text{AA} AA 的范畴,所以最后只出了三分之一,瞬间涨姿势了,学到了,以后跟别人出去吃饭,带家属的算一份啊!!!

说起来带家属,当时说好的,大家可以带家属一起,可是等我们出发的前一天的时候我才知道,十五个同事都没有带,就我一个人带了对象……尴尬的一笔,一个平时闷骚至极的同事扬言房间要离我远点儿……第二天早上还问我晚上睡得咋样……唉,一言难尽啊!

别的不多说了,从今天开始,就要恢复写专栏的习惯了,游戏不能再那么痴迷了,不经历一段时间的耕耘,以后哪里能够发展一个良性的第二职业啊!

说起第二职业,我爸竟然希望我找一个体力活儿当第二职业,权当锻炼身体???

倦鸟
2019.11.13 11:03

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值