描述
题解
相关讨论区给的思路解决了我的疑惑,十分好的一道题,dp[i][j]
表示由i个数字组成j的种类,状态转移方程为:
dp[i][j] = dp[i - 1][j - i] + dp[i][j - i]
因为N最大为5w,所以可以求出i的上限在320左右,定义一个int dp[350][50000]
大小的还是可以的,但是我想玩得花一些,于是用的滚动数组,然而却忽略了将dp[i][0]~dp[i][(i + 1) * i / 2 - 1]
全部置为0,或者说直接对dp[i]
初始化为0。
for (int j = 0; j < (i + 1) * i / 2; j++)
{
dp[i & 1][j] = 0;
}
代码
#include <iostream>
using namespace std;
const int MAXN = 5e4 + 10;
const int MOD = 1e9 + 7;
int dp[2][MAXN];
int main(int argc, const char * argv[])
{
int N;
cin >> N;
long long res = 1;
for (int i = 1; i <= N; i++)
{
dp[1][i] = 1;
}
for (int i = 2; (i + 1) * i / 2 <= N; i++)
{
for (int j = 0; j < (i + 1) * i / 2; j++)
{
dp[i & 1][j] = 0;
}
for (int j = i; j <= N; j++)
{
dp[i & 1][j] = (dp[(i - 1) & 1][j - i] + dp[i & 1][j - i]) % MOD;
}
res = (res + dp[i & 1][N]) % MOD;
}
std::cout << res << '\n';
return 0;
}