HDU-1548-A strange lift

本文通过一个具体的ACM模版题目介绍了如何使用Dijkstra算法解决单源最短路径问题,并给出了详细的实现代码。该方法适用于将某些特定类型的图转换为求最短路径问题的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ACM模版

描述

描述

题解

猛一看,是经典的bfs啊,当然,bfs真的可以滴,但是这是在最短路专题的,然后转念一想,真有趣啊,只要把能连通的全部置为1,这样不就可以求最短路了?这是个谜一样的题,好久前做过相似的题,我却没有想到可以用最短路搞搞!!!

代码

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;

/*
 *  单源最短路径,Dijkstra算法,邻接矩阵形式,复杂度为O(n^2)
 *  求出源beg到所有点的最短路径,传入图的顶点数和邻接矩阵cost[][]
 *  返回各点的最短路径lowcost[],路径pre[],pre[i]记录beg到i路径上的父节点,pre[beg] = -1
 *  可更改路径权类型,但是权值必须为非负
 */
const int MAXN = 210;
const int INF = 0x3f3f3f3f; //  表示无穷
bool vis[MAXN];
int pre[MAXN];

void Dijkstra(int cost[][MAXN], int lowcost[], int n, int beg)
{
    for (int i = 0; i < n; i++)
    {
        lowcost[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    lowcost[beg] = 0;
    for (int j = 0; j < n; j++)
    {
        int k = -1;
        int min = INF;
        for (int i = 0; i < n; i++)
        {
            if (!vis[i] && lowcost[i] < min)
            {
                min = lowcost[i];
                k = i;
            }
        }
        if (k == -1)
        {
            break;
        }
        vis[k] = true;
        for (int i = 0; i < n; i++)
        {
            if (!vis[i] && lowcost[k] + cost[k][i] < lowcost[i])
            {
                lowcost[i] = lowcost[k] + cost[k][i];
                pre[i] = k;
            }
        }
    }
}

int cost[MAXN][MAXN];
int lowcost[MAXN];

int main(int argc, const char * argv[])
{
    int n;
    int start, end;
    int value;
    while (cin >> n, n)
    {
        cin >> start >> end;
        memset(cost, 0x3f, sizeof(cost));

        for (int i = 0; i < n; i++)
        {
            scanf("%d", &value);
            if (i + value < n)
            {
                cost[i][i + value] = 1;
            }
            if (i - value >= 0)
            {
                cost[i][i - value] = 1;
            }
        }

        Dijkstra(cost, lowcost, n, start - 1);
        printf("%d\n", lowcost[end - 1] == INF ? -1 : lowcost[end - 1]);
    }

    return 0;
}

参考

《最短路》

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值