HDU-1245-Saving James Bond

本文探讨了一个典型的ACM竞赛问题——利用最短路径算法解决在给定地图上寻找从岛屿出发通过踏点跳跃至湖岸的最短路径问题。文中详细介绍了使用Dijkstra算法的具体实现过程,包括如何构建邻接矩阵、处理路径信息以及解决精度和数据强度高的问题。
摘要由CSDN通过智能技术生成

ACM模版

描述

描述

题解

给定一个100X100的池子,中间(0, 0)处有一个直径为15的岛,然后湖中有许多踏点,问能否踩着踏点蹦跶出来,当然,有一个最远的蹦跶的距离d

思路很清晰,最短路,只要求出两两点之间的距离加以处理,然后把岛当做源点,湖外当做终点,添加与其他点对应的路径信息即可,这里有一个问题是,精度十分高,并且数据强度十分高,也就是说,当路径长度一样时,要求输出的第二个步数要尽量小,那么也就是模板中的双路径信息的代码了,第一信息是路径距离,第二信息步数,每跳一步,lowsteps[]加一。

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>

using namespace std;

const int MAXN = 110;

struct cro
{
    int x;
    int y;
};

struct cro Cro[MAXN];

/*
 *  单源最短路径,Dijkstra算法,邻接矩阵形式,复杂度为O(n^2)
 *  求出源beg到所有点的最短路径,传入图的顶点数和邻接矩阵cost[][]
 *  返回各点的最短路径lowcost[],路径pre[],pre[i]记录beg到i路径上的父节点,pre[beg] = -1
 *  可更改路径权类型,但是权值必须为非负,下标0~n-1
 */
const int INF = 0x3f3f3f3f; //  表示无穷

double lowdis[MAXN];
int lowsteps[MAXN];
int visit[MAXN];
double map[MAXN][MAXN];

void dijkstra(int st, int n)
{
    int temp = 0;
    for (int i = 1; i <= n; i++)
    {
        lowdis[i] = map[st][i];
        lowsteps[i] = 1;
    }
    memset(visit, 0, sizeof(visit));

    visit[st] = 1;
    for (int i = 1; i < n; i++)
    {
        double MIN = INF;
        for (int j = 1; j <= n; j++)
        {
            if (!visit[j] && lowdis[j] < MIN)
            {
                temp = j;
                MIN = lowdis[j];
            }
        }
        visit[temp] = 1;
        for (int j = 1; j <= n; j++)
        {
            if (!visit[j] && map[temp][j] < INF)
            {
                if (lowdis[j] > lowdis[temp] + map[temp][j])
                {
                    lowdis[j] = lowdis[temp] + map[temp][j];
                    lowsteps[j] = lowsteps[temp] + 1;
                }
                else if (lowdis[j] == lowdis[temp] + map[temp][j])
                {
                    if (lowsteps[j] > lowsteps[temp] + 1)
                    {
                        lowsteps[j] = lowsteps[temp] + 1;
                    }
                }
            }
        }
    }

    return ;
}

//  两点间
double getDis(struct cro a, struct cro b)
{
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

//  点到边
double getDis_(struct cro c)
{
    double x = fabs(c.x);
    double y = fabs(c.y);
    double dis = 50 - x;
    dis = 50 - y > dis ? dis : 50 - y;
    return dis;
}

int main(int argc, const char * argv[])
{
    int n;
    double d;
    Cro[0].x = Cro[0].y = 0;

    while (cin >> n >> d)
    {
        //  特判
        if (n == 0)
        {
            if (d >= 42.50)
            {
                printf("42.50 1\n");
            }
            else
            {
                printf("can't be saved\n");
            }
            continue;
        }

        for (int i = 0; i <= MAXN; i++)
        {
            for (int j = 0; j <= MAXN; j++)
            {
                map[i][j] = INF;
            }
        }

        for (int i = 1; i <= n; i++)
        {
            scanf("%d%d", &Cro[i].x, &Cro[i].y);
            for (int j = 1; j < i; j++)
            {
                double dis = getDis(Cro[i], Cro[j]);
                if (dis <= d)
                {
                    map[i][j] = map[j][i] = dis;
                }
            }
        }

        //  特判
        if (d >= 42.50)
        {
            printf("42.50 1\n");
            continue;
        }

        //  岛到cro的距离\cro到湖外距离
        for (int i = 1; i <= n; i++)
        {
            double dis = getDis(Cro[0], Cro[i]) - 7.50;
            if (dis <= d)
            {
                map[i][0] = map[0][i] = dis;
            }
            dis = getDis_(Cro[i]);
            if (dis <= d)
            {
                map[i][n + 1] = map[n + 1][i] = dis;
            }
        }

        dijkstra(0, n + 2);

        if (lowdis[n + 1] == INF)
        {
            printf("can't be saved\n");
        }
        else
        {
            printf("%.2lf %d\n", lowdis[n + 1], lowsteps[n + 1]);
        }
    }

    return 0;
}

参考

《最短路》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值