描述
题解
这个题,其实就是和数位 dp 相似,分为满状态和非满状态来考虑,什么叫满状态呢?就拿
21
来说吧,当最高位为
0、1
的时候,所表示的数为分别为
0∼9
和
10∼19
,这叫做满,而如果是
2
开头,那么就只需要表示
于是乎,对于满状态,你无可抗拒的需要对应的每一位都有对应的数字,无法节省位数,而非满的则需要考虑是否可以节省最高这一位,最高这一位是否能够节省在于只存取数时对应每一位都和最高相同,可以想象,如果一个数最高位是
2
,那么如果他可以取到
这里并不难理解,和之前写非递归形式的数位 dp 有些许的相似之处可以参考,而这个题应该叫做贪心才对吧!
代码
#include <stdio.h>
#include <math.h>
#include <string.h>
const int MAXN = 1e4 + 10;
char n[MAXN];
int main()
{
scanf("%s", n);
int len = (int)strlen(n);
int res = 0;
res += 10 * (len - 1); // 低位都需要对应找到 0 ~ 9
res += n[0] - '1'; // n 最高位肯定不需要加 0 的可能,也需要特判一下是否需要加 n[0] 的可能
int flag = 1;
for (int i = 1; i < len; i++)
{
if (n[i] == n[i - 1])
{
continue;
}
else if (n[i] > n[i - 1])
{
break;
}
else
{
flag = 0;
break;
}
}
if (flag)
{
res++;
}
printf("%d\n", res);
return 0;
}