51Nod-1452-加括号

ACM模版

描述

描述

题解

这个表达式我们可以划分为 连加部分 + 连乘部分 + 连加部分 + … + 连乘部分 + 连加部分 + 连乘部分,这里注意数字要和乘法亲和。

此时我们应该考虑,什么地方可以加括号使序列结果变大,那么,这个不难想到,当我们加的括号两边都是乘号时,有可能会增大,但是我们需要考虑的只是连乘的头尾部分,因为中间的部分是没有必要括进去的。所以呢,我们在拆分序列时,需要保存连乘部分的头尾值,对其进行操作。然后呢,我们就可以暴力枚举加括号的地方,这里提示,乘号的数量不超过 15 个,所以暴力枚举是可行的。

总而言之,最后只需要把暴力枚举的结果中最大的值输出即可。

貌似这个题用 py 写更简单,但是效率真是不敢恭维啊……但是,py 真心强大啊!!!

代码

#include <stdio.h>
#include <string.h>

#define max(a, b) ((a) > (b)) ? (a) : (b)

typedef long long ll;

const int MAXN = 5555;
const int MAXM = 22;

ll ans = 0;
ll mul[MAXM];
ll sta[MAXM];   //  连乘部分的开头
ll end[MAXM];   //  连乘部分的结尾
ll sum[MAXM];
char str[MAXN];

int main()
{
    scanf("%s", str);
    int len = (int)strlen(str);

    //  将连乘部分和连加部分拆分开来
    int cnt = 0;
    sta[0] = mul[0] = 1;
    for (int i = 1; i <= len; )
    {
        while (str[i] == '*')
        {
            mul[cnt] *= str[i - 1] - '0';
            i += 2;
        }
        mul[cnt] *= str[i - 1] - '0';   //  和乘法亲和
        end[cnt] = str[i - 1] - '0';
        mul[++cnt] = 1;

        i += 2;
        while (str[i] == '+')
        {
            sum[cnt] += str[i - 1] - '0';
            i += 2;
        }
        sta[cnt] = str[i - 1] - '0';
    }

    //  不加括号的结果
    for (int i = 0; i < cnt; i++)
    {
        ans += sum[i] + mul[i];
    }
    //  暴力枚举加括号的地方
    for (int i = 1; i < cnt; i++)
    {
        for (int j = 0; j < i; j++)
        {
            ll tmp = 0;
            ll m = end[j] + sta[i];
            for (int k = 0; k < j; k++)
            {
                tmp += sum[k] + mul[k];
            }
            tmp += sum[j];

            for (int k = j + 1; k < i; k++)
            {
                m += sum[k] + mul[k];
            }
            m += sum[i];

            tmp += mul[i] / sta[i] * mul[j] / end[j] * m;
            for (int k = i + 1; k < cnt; k++)
            {
                tmp += sum[k] + mul[k];
            }
            ans = max(ans, tmp);
        }
    }

    printf("%lld\n", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值