51Nod-1969-Fire!

ACM模版

描述

描述

题解

数论题,直接调用结论……要是想知道怎么证明,建议去看看那本叫做《初等数论及其应用》第七章部分讲有详细的推论与证明。

至于结论嘛,在题解中说的十分清楚了,贴出来大家看看吧……最讨厌这种题了……对我这样的数学渣滓来说,要命的。

描述

P.s. 这尼玛都是神马玩意儿啊……

代码

#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;

const int MOD = 1e9 + 7;
const int MAGIC = 998244352;
const int MAXN = 1e5 + 10;

int T, base;
long long pow_base[MAXN];

template <class T>
inline void scan_d(T &ret)
{
    char c;
    ret = 0;
    while ((c = getchar()) < '0' || c > '9');
    while (c >= '0' && c <= '9')
    {
        ret = ret * 10 + (c - '0'), c = getchar();
    }
}

void init()
{
    pow_base[0] = 1;
    pow_base[1] = base;
    for (int i = 2; i < T; i++)
    {
        pow_base[i] = base * pow_base[i - 1];
        pow_base[i] %= MOD;
    }
}

int main(int argc, const char * argv[])
{
    cin >> T >> base;

    init();

    long long N, ans = 0;
    while (T--)
    {
        scan_d(N);
        double tmp = sqrt(1 + 24 * N);
        int k1 = (tmp + 1) / 6;
        int k2 = (tmp - 1) / 6;
        if (k1 * (3 * k1 - 1) == 2 * N)
        {
            if (k1 & 1)
            {
                ans += (MAGIC * pow_base[T]) % MOD;
            }
            else
            {
                ans += pow_base[T];
            }
            ans %= MOD;
        }
        else if (k2 * (3 * k2 + 1) == 2 * N)
        {
            if (k2 & 1)
            {
                ans += (MAGIC * pow_base[T]) % MOD;
            }
            else
            {
                ans += pow_base[T];
            }
            ans %= MOD;
        }
    }

    printf("%lld\n", ans);

    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值