51nod 1778 小Q的集合 lucas定理+线性筛+数学

15 篇文章 0 订阅
5 篇文章 0 订阅

题意

小Q有一个集合 S S ,它的元素个数|S|=n
对于 S S 的任意一个子集合T,定义 f(T)=|T|k f ( T ) = | T | k ,定义 T T 关于S的补集为 ST S − T
小Q想知道,如果他等概率地选择一个 S S 的子集T,那么 f(T)f(ST) f ( T ) − f ( S − T ) 的方差是多少。
由于这个方差值可能很大,不妨设其为 v v ,你只需要给出(v2n)modm的值即可。
kn10106,1<=k<=106,m,2<=m<=106 k ≤ n ≤ 10 10 6 , 1 <= k <= 10 6 , m 是 质 数 , 2 <= m <= 10 6

分析

注意到 f(T)f(ST) f ( T ) − f ( S − T ) 的平均数是0,那么我们要求的其实就是

i=0nCin(ik(ni)k)2 ∑ i = 0 n C n i ( i k − ( n − i ) k ) 2

因为根据lucas定理有
Cinmodm=Ci/mn/mCimodmnmodmmodm C n i mod m = C n / m i / m ∗ C n mod m i mod m mod m
所以我们只用考虑所有满足 imodm<=nmodm i mod m <= n mod m i i 即可。
然后就开始推式子:
ans=i=0nmj=0nmodmCnim+j((im+j)k(nimj)k)2

=i=0nmCinmj=0nmodmCjnmodm(jk(nj)k)2 = ∑ i = 0 ⌊ n m ⌋ C ⌊ n m ⌋ i ∑ j = 0 n mod m C n mod m j ( j k − ( n − j ) k ) 2

=2nmj=0nmodmCjnmodm(jk(nj)k)2 = 2 ⌊ n m ⌋ ∑ j = 0 n mod m C n mod m j ( j k − ( n − j ) k ) 2

前面2的指数可以用费马小定理来优化,后面可以线性筛处理自然数幂,线性预处理组合数,这样总的复杂度就是 O(n) O ( n ) 的了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=1000005;
const int maxn=1000000;

int m,k,s[N],prime[N],tot,a[N],jc[N],ny[N];
bool not_prime[N];
char str[N];

int ksm(int x,int y)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%m;
        x=(LL)x*x%m;y>>=1;
    }
    return ans;
}

int C(int x,int y)
{
    return (LL)jc[x]*ny[y]%m*ny[x-y]%m;
}

int sqr(int x)
{
    return (LL)x*x%m;
}

int divi(int c)
{
    int s,g=0;
    for (int i=1;i<=maxn;i++)
    {
        s=g*10+a[i];
        a[i]=s/c;
        g=s%c;
    }
    return g;
}

void get_prime(int n)
{
    s[1]=1;
    for (int i=2;i<=n;i++)
    {
        if (!not_prime[i]) prime[++tot]=i,s[i]=ksm(i,k);
        for (int j=1;j<=tot&&i*prime[j]<=n;j++)
        {
            not_prime[i*prime[j]]=1;
            s[i*prime[j]]=(LL)s[i]*s[prime[j]]%m;
            if (i%prime[j]==0) break;
        }
    }
}

int main()
{
    scanf("%s%d%d",str+1,&k,&m);int len=strlen(str+1);
    for (int i=1;i<=len;i++) a[maxn-len+i]=str[i]-'0';
    int r1=divi(m),r2=divi(m-1);
    get_prime(r1);
    jc[0]=jc[1]=ny[0]=ny[1]=1;
    for (int i=2;i<=r1;i++) jc[i]=(LL)jc[i-1]*i%m,ny[i]=(LL)(m-m/i)*ny[m%i]%m;
    for (int i=2;i<=r1;i++) ny[i]=(LL)ny[i-1]*ny[i]%m;
    int ans=0;
    for (int i=0;i<=r1;i++) (ans+=(LL)C(r1,i)*sqr(s[i]-s[r1-i])%m)%=m;
    ans=(LL)ans*ksm(2,r2)%m;
    printf("%d",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值