描述
题解
大数问题,刚好用来测试我的大数模版。
测试代码
// AC 模版通过
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cassert>
using namespace std;
typedef long long ll;
class BigInteger
{
private:
const static int MOD = (119 << 23) + 1;
const static int root = 3;
const static int invroot = 332748118;
int *a;
int length, sig;
void apply(int length)
{
if (!length)
{
return ;
}
a = new int [length]();
this -> length = length;
}
void destroy()
{
if (!length)
{
return ;
}
delete [] a;
a = nullptr;
}
void resize(int length)
{
if (length == this->length)
{
return ;
}
if (!length)
{
return destroy();
}
int *aux = a;
a = new int [length]();
memcpy(a, aux, sizeof(int) * min(length, this->length));
if (this->length)
{
delete [] aux;
}
this->length = length;
}
BigInteger(int length) : length(length), sig(0)
{
apply(length);
}
BigInteger(const BigInteger &p, int length) : length(length), sig(p.sig)
{
apply(length);
memcpy(a, p.a, sizeof(int) * min(p.length, length));
}
bool absgreaterequal(const BigInteger &q) const &
{
if (length != q.length)
{
return length > q.length;
}
for (int i = length - 1; ~i; -- i)
{
if (a[i] > q.a[i])
{
return true;
}
if (a[i] < q.a[i])
{
return false;
}
}
return true;
}
BigInteger operator << (const int &dis) const &
{
if (!sig)
{
return *this;
}
BigInteger ret(length + dis);
memcpy(ret.a + dis, a, sizeof(int) * length);
ret.sig = sig;
return ret;
}
BigInteger operator >> (const int &dis) const &
{
if (dis >= length)
{
return BigInteger();
}
BigInteger ret(length - dis);
memcpy(ret.a, a + dis, sizeof(int) * ret.length);
ret.sig = sig;
return ret;
}
int powermod(int a, int exp) const &
{
int ret = 1;
for (; exp; exp >>= 1)
{
if (exp & 1)
{
ret = (ll) ret * a % MOD;
}
a = (ll) a * a % MOD;
}
return ret;
}
void NTT(int *a, int length, int type) const &
{
int len = -1;
for (int x = length; x; ++len, x >>= 1) ;
for (int i = 1, j = 0; i < length - 1; ++i)
{
for (int s = length; j ^= s >>= 1, ~j & s; ) ;
if (i < j)
{
swap(a[i], a[j]);
}
}
for (int i = 1; i <= len; ++ i)
{
for (int j = 0, unit = powermod(type == 1 ? root : invroot, (MOD - 1) >> i), szk = 1 << (i - 1); j < length; j += 1 << i)
{
for (int k = j, w = 1; k < j + szk; ++ k)
{
int s = a[k], t = (ll) w * a[k + szk] % MOD;
a[k] = s + t >= MOD ? s + t - MOD : s + t;
a[k + szk] = s - t < 0 ? s - t + MOD : s - t;
w = (ll) w * unit % MOD;
}
}
}
if (type == 1)
{
return ;
}
int inv = powermod(length, MOD - 2);
for (int i = 0; i < length; ++i)
{
a[i] = (ll) a[i] * inv % MOD;
}
}
int divide(BigInteger &p, const int &q) const &
{
if (!q)
{
assert(-1);
}
if (!p.sig)
{
return 0;
}
ll remain = 0, x = abs(q);
for (int i = length - 1; ~i; -- i)
{
remain = remain * 10 + p.a[i];
p.a[i] = (int)(remain / x);
remain %= x;
}
for (; p.length && !p.a[p.length - 1]; -- p.length) ;
remain *= p.sig;
p.sig *= q < 0 ? -1 : 1;
if (!p.length)
{
p.sig = 0;
}
return (int)remain;
}
public:
BigInteger() : length(0), sig(0) { a = nullptr; }
BigInteger(const BigInteger &p) : length(p.length), sig(p.sig)
{
apply(length), memcpy(a, p.a, sizeof(int) * length);
}
~BigInteger() { destroy(); }
int getlength() { return length; }
bool positive() { return sig > 0; }
bool iszero() { return !sig; }
bool negative() { return sig < 0; }
bool even() { return !sig || !(a[0] & 1); }
BigInteger &operator = (const BigInteger &p)
{
destroy();
apply(p.length);
length = p.length;
sig = p.sig;
memcpy(a, p.a, sizeof(int) * length);
return *this;
}
template <typename T>
BigInteger &operator = (const T &p)
{
destroy();
sig = p ? p > 0 ? 1 : -1 : 0;
apply(40);
int cnt = 0;
for (T x = abs(p); x; x /= 10)
{
a[cnt++] = x % 10;
}
resize(cnt);
return *this;
}
void read()
{
destroy();
sig = 1;
char ch = getchar();
for ( ; ch < '0' || ch > '9'; ch = getchar())
{
if (ch == '-')
{
sig = -1;
}
}
resize(1);
int nowlength = 0;
for (; ch >= '0' && ch <= '9'; ch = getchar())
{
a[nowlength++] = ch - '0';
if (nowlength == length)
{
resize(length << 1);
}
}
reverse(a, a + nowlength);
for (; nowlength && !a[nowlength - 1]; --nowlength) ;
resize(nowlength);
sig = length ? sig : 0;
}
void write()
{
if (!sig)
{
return (void)putchar('0');
}
if (sig < 0)
{
putchar('-');
}
for (int i = length - 1; ~i; i--)
{
putchar(a[i] + '0');
}
}
template <typename T>
T tointeger()
{
T ret = 0;
for (int i = length - 1; i >= 0; ++ i)
{
ret = ret * 10 + a[i];
}
return ret * sig;
}
bool operator == (const BigInteger &p) const &
{
if (sig != p.sig || length != p.length)
{
return false;
}
for (int i = 0; i < length; ++i)
{
if (a[i] != p.a[i])
{
return false;
}
}
return true;
}
bool operator > (const BigInteger &p) const &
{
if (sig != p.sig)
{
return sig > p.sig;
}
if (length != p.length)
{
return length > p.length ^ sig == -1;
}
for (int i = length - 1; i >= 0; --i)
{
if (a[i] > p.a[i])
{
return sig > 0;
}
if (a[i] < p.a[i])
{
return sig < 0;
}
}
return false;
}
BigInteger &operator ++ ()
{
resize(length + 1);
sig >= 0 ? ++a[0] : --a[0];
for (int i = 0; i < length - 1; ++i)
{
if (a[i] < 10 && a[i] >= 0)
{
break;
}
a[i] >= 10 ? (a[i] -= 10, ++a[i + 1]) : (a[i] += 10, --a[i + 1]);
}
for (; length && !a[length - 1]; --length) ;
resize(length);
sig = length ? sig >= 0 ? 1 : -1 : 0;
return *this;
}
BigInteger &operator -- ()
{
sig = -sig;
++*this;
sig = -sig;
return *this;
}
BigInteger operator ++ (int)
{
BigInteger aux(*this);
++*this;
return aux;
}
BigInteger operator -- (int)
{
BigInteger aux(*this);
--*this;
return aux;
}
BigInteger operator + (const BigInteger &p) const &
{
if (!p.sig)
{
return *this;
}
if (!sig)
{
return p;
}
bool type = true, flag = sig > 0;
const BigInteger *aux = this, *aux1 = &p;
if (sig != p.sig)
{
type = false;
if (!absgreaterequal(p))
{
flag = !flag;
swap(aux, aux1);
}
}
BigInteger ret(*aux, max(length, p.length) + 1);
for (int i = 0; i < ret.length - 1; ++i)
{
ret.a[i] += i < aux1->length ? type ? aux1->a[i] : -aux1->a[i] : 0;
ret.a[i] >= 10 ? (ret.a[i] -= 10, ++ret.a[i + 1]) : ret.a[i] < 0 ? (ret.a[i] += 10, --ret.a[i + 1]) : 0;
}
for (; ret.length && !ret.a[ret.length - 1]; --ret.length) ;
ret.resize(ret.length);
ret.sig = ret.length ? flag ? 1 : -1 : 0;
return ret;
}
BigInteger operator - () const &
{
BigInteger ret(*this);
ret.sig = -ret.sig;
return ret;
}
BigInteger operator - (const BigInteger &p) const & { return *this + (-p); }
BigInteger operator * (const BigInteger &p) const &
{
if (!sig || !p.sig)
{
return BigInteger();
}
int n = length + p.length;
int lengthret = 1;
for (; lengthret < n; lengthret <<= 1) ;
BigInteger ret(*this, lengthret);
int *aux = new int [lengthret]();
memcpy(aux, p.a, sizeof(int) * p.length);
NTT(ret.a, lengthret, 1);
NTT(aux, lengthret, 1);
for (int i = 0; i < lengthret; ++i)
{
ret.a[i] = (ll) ret.a[i] * aux[i] % MOD;
}
NTT(ret.a, lengthret, -1);
for (int i = 0; i < n - 1; i++)
{
ret.a[i + 1] += ret.a[i] / 10;
ret.a[i] %= 10;
}
for (; n && !ret.a[n - 1]; --n) ;
ret.resize(n);
ret.sig = sig * p.sig;
return ret;
}
BigInteger operator * (const int &p) const &
{
if (!p || !sig)
{
return BigInteger();
}
BigInteger ret(*this, length + 10);
ll x = abs(p), remain = 0;
for (int i = 0; i < length; ++ i)
{
remain += ret.a[i] * x;
ret.a[i] = remain % 10;
remain /= 10;
}
int nowlength = length;
for (ret.a[nowlength] = (int)remain; ret.a[nowlength]; ++nowlength)
{
ret.a[nowlength + 1] = ret.a[nowlength] / 10;
ret.a[nowlength] %= 10;
}
for (; nowlength && !ret.a[nowlength - 1]; --nowlength) ;
ret.resize(nowlength);
ret.sig = sig * (p < 0 ? -1 : 1);
return ret;
}
BigInteger operator / (const BigInteger &p) const &
{
if (!p.sig)
{
assert(-1);
}
if (!sig || length < p.length)
{
return BigInteger();
}
int num = 0;
for (int i = p.length - 1; i >= p.length - 3; --i)
{
(num *= 10) += i >= 0 ? p.a[i] : 0;
}
num = 100000 / num;
int nowprecision = 1;
BigInteger ret;
ret = num;
for (; nowprecision <= length - p.length; nowprecision <<= 1)
{
BigInteger aux((nowprecision << 1) + 3);
aux.sig = 1;
for (int i = p.length - aux.length; i < p.length; ++i)
{
aux.a[i - p.length + aux.length] = i >= 0 ? p.a[i] : 0;
}
aux = (aux * ret >> (nowprecision + 2)) * ret >> (nowprecision + 2);
ret = (ret * 2 << nowprecision) - aux;
}
ret = ret * *this >> (p.length + nowprecision + 1);
ret.sig = abs(ret.sig);
BigInteger aux(p);
aux.sig = abs(aux.sig);
if (!absgreaterequal(ret * aux))
{
--ret;
}
else if (!absgreaterequal(++ret * aux))
{
--ret;
}
ret.sig *= sig * p.sig;
return ret;
}
BigInteger operator / (const int &p) const &
{
BigInteger ret(*this);
divide(ret, p);
ret.resize(ret.length);
return ret;
}
BigInteger sqrt() const &
{
if (sig < 0)
{
assert(-1);
}
if (!sig)
{
return *this;
}
int num = 0;
for (int i = length - 1; i >= length - 8; --i)
{
(num *= 10) += i >= 0 ? a[i] : 0;
}
ll x = length & 1 ? 10000000000000ll : 100000000000000ll;
num = std::sqrt(1.0 * x / num); // 命名空间不能省
int nowprecision = 2;
BigInteger ret;
ret = num;
for (; nowprecision <= (length >> 1) + 1; nowprecision = (nowprecision << 1) - 1)
{
BigInteger aux((nowprecision << 1) + 1 + (length & 1));
aux.sig = 1;
for (int i = length - aux.length; i < length; ++i)
{
aux.a[i - length + aux.length] = i >= 0 ? a[i] : 0;
}
aux = ((aux * ret >> (nowprecision + 1)) * ret >> (nowprecision + 1)) / 2;
BigInteger aux1((nowprecision + 1) << 1);
aux1.sig = 1;
aux1.a[aux1.length - 1] = 1, aux1.a[aux1.length - 2] = 5;
ret = ret * (aux1 - aux) >> (nowprecision + 2);
}
ret = ret * *this >> ((length >> 1) + nowprecision + 1);
if (!absgreaterequal(ret * ret))
{
--ret;
}
else
{
++ret;
if (!absgreaterequal(ret * ret))
{
--ret;
}
}
return ret;
}
BigInteger operator % (const BigInteger &p) const &
{
if (!p.sig)
{
assert(-1);
}
return *this - *this / p * p;
}
int operator % (const int &p) const &
{
if (!p)
{
assert(-1);
}
BigInteger aux(*this);
return divide(aux, p);
}
friend BigInteger operator * (const int &q, const BigInteger &p) { return p * q; }
BigInteger &operator += (const BigInteger &p) { *this = *this + p; return *this; }
BigInteger &operator -= (const BigInteger &p) { *this = *this - p; return *this; }
BigInteger &operator *= (const BigInteger &p) { *this = *this * p; return *this; }
BigInteger &operator *= (const int &p) { *this = *this * p; return *this; }
BigInteger &operator /= (const BigInteger &p) { *this = *this / p; return *this; }
BigInteger &operator /= (const int &p) { *this = *this / p; return *this; }
BigInteger &operator %= (const BigInteger &p) { *this = *this % p; return *this; }
BigInteger &operator %= (const int &p) { *this = *this % p; return *this; }
template <typename T>
BigInteger power(T exp) const &
{
BigInteger ret = 1, aux(*this);
for (; exp; exp >>= 1)
{
if (exp & 1)
{
ret *= aux;
}
aux *= aux;
}
return ret;
}
};
BigInteger a;
int main()
{
a.read();
a.sqrt().write();
putchar(10);
return 0;
}
测试结果
模版通过,但是这个模版过于庞大了,虽然比赛时没有哪个啥子会将整个抄下来,但是也是一个令人极其头疼的问题,很纠结到底添加不添加到模版中,最后想到宁肯有了用不上,也不要用上时没有,所以决定添加进去,也许可以删掉那些不好用的模版。