描述
题解
可以用容斥解,也可以用欧拉函数解,推导过程真心强大。
Ps. 图片来源 ITAK’s blog。大佬的博客中也有这个题的容斥解法,很强很强很强。
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll MAXN = 1e4 + 5;
ll gcd(ll a, ll b)
{
if (b == 0)
{
return a;
}
return gcd(b, a % b);
}
int n;
ll m;
ll a[MAXN];
ll g[MAXN];
ll fac[MAXN];
ll Phi(ll x)
{
ll ans = x;
for (ll i = 2; i * i <= x; i++)
{
if (x % i == 0)
{
ans -= ans / i;
while (x % i == 0)
{
x /= i;
}
}
}
if (x > 1)
{
ans -= ans/x;
}
return ans;
}
int main()
{
int T;
scanf("%d", &T);
for (int ce = 1; ce <= T; ce++)
{
scanf("%d%lld", &n, &m);
int flag = 0;
for (int i = 0; i < n; i++)
{
scanf("%lld", a + i);
g[i] = gcd(a[i], m);
if (g[i] == 1)
{
flag = 1;
}
}
printf("Case #%d: ", ce);
if (flag == 1)
{
printf("%lld\n", m * (m - 1) >> 1);
continue;
}
sort(g, g + n);
n = (int)(unique(g, g + n) - g);
int cnt = 0;
for (ll i = 2; i * i <= m; i++)
{
if (i * i == m)
{
fac[cnt++] = m / i;
}
else if (m % i == 0)
{
fac[cnt++] = i;
fac[cnt++] = m / i;
}
}
sort(fac, fac + cnt);
ll sum = 0;
for (int i = 0; i < cnt; i++)
{
for (int j = 0; j < n; j++)
{
if (fac[i] % g[j] == 0)
{
sum += Phi(m / fac[i]) * m >> 1;
break;
}
}
}
printf("%lld\n", sum);
}
return 0;
}