在学习笔记1:Dijkstra算法(附洛谷P4779题解)_flyfreemrn的博客-CSDN博客
和学习笔记2:SPFA(SPFA他死了!)_flyfreemrn的博客-CSDN博客中
我讲了关于图论中单源最短路的两种算法,这次来说一下多源最短路的算法:floyd
相比dijsktra算法于SPFA算法,floyd主要解决多源最短路算法,floyd于前两种算法的存图方式相比,floyd使用邻接矩阵而非链表来存图
现在有一张有向图
先用邻接矩阵来存不同点之间的距离
这时我们想1-4的距离能不能用2来优化呢,即把1-4变为1-2+2-4如下图:
不难发现,1-2+2-4是要比1-4小的,所以我们把1-4更改为1-2+2-4
这样,我们就优化了1-4的距离,重复这个操作,直到所有值都被优化成最小值
这样我们就了解里floyd的思想部分
如何实现:
建立三层循环,第一层循环枚举优化使用的点,二三层循环枚举每一条边,在这样就可以不漏任何一条边
for(int k=1;k<=n;k++){//枚举用于优化的点
for(int i=1;i<=n;i++){
if(i==k)continue;//如果i和k重复,就跳过里层循环
for(int j=1;j<=n;j++){//枚举边
if(i==j||j==k)continue;
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);//更新最短路
}
}
}
以上就是floyd算法的思想与实现(因为本蒟蒻没有找到合适的例题,所以这里就不贴例题了)这篇文章是本蒟蒻第一次在博客上画图(虽然我并没写几篇博客)画的不好请见谅