常见海量数据处理问题

1,给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
方案1:
可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

(1)遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(a0,a1,...,a999)中。这样每个小文件的大约为300M。
(2)遍历文件b,采取和a相同的方式将url分别存储到1000各小文件。这样处理后,所有可能相同的url都在对应的小文件(b0,b1,...,b999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
(3)求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:
如果允许有一定的错误率,可以使用Bloom filter(布隆过滤器)。
4G内存大概可以表示340亿bit,将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。


2,有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

方案1:
(1)顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
(2)找一台内存在2G左右的机器,依次对每个文件用hash_map(query, query_count)来统计每个query出现的次数。
(3)利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件。
(4)对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:
一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

定义一个全局数组: char word[MAXLEN]; word[0] = '\0';
struct node
{
char val;
int cnt;
node* child[26];
}
接口:
void Traverse(node* root, int depth)
{
if (root == NULL)
return;
word[depth] = root->val;
word[depth+1] = '\0';
cout << word << ": " << root->cnt << endl;
for (int i = 0; i < 26; i++)
Traverse(root->child[i], depth+1)
}

3,有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

(1)顺序读文件中,对于每个词x,取hash(x)%5000 ,然后按照该值存到5000个小文件中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。
(2)对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。
(3)下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。


4,在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。

方案:
(1)采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32*4bit=1G字节内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。
(2)所描完事后,查看bitmap,把对应位是01的整数输出即可。

5, 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案:这题是考虑时间效率。
用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值