常用的数论算法板子

常用的数论算法

# include <cstdio>
# include <cstring>
# include <algorithm>
# include <queue>
# include <map>
# define ll long long

using namespace std;

const int maxn =  1e6+10;

ll pri[maxn]; //素数 必须大于1 
ll prime[maxn];
ll phi[maxn]; //欧拉数 
int tot = 0;

ll quick(ll a,ll b) // 快速幂 
{
    ll ans = 1;
    while(b)
    {
        if(b&1){
            ans *= a;
        }
        b >>= 1;
        a *= a;
    } 
    return ans;
}

void getPri()
{
    //线性筛素数、
    tot = 0;
    memset(pri,0,sizeof(pri)); //先初始化
    pri[0] = pri[1] = 1;
    for(ll i = 2;i < maxn;i++)
    {
        if(!pri[i]){
            prime[tot++] = i;
            for(ll j = i+i;j < maxn;j += i)
            {
                pri[j]++;
            }
        }

    } 
}

void getPhi() // 线性求欧拉函数值 
{
    for(ll i = 0;i < maxn;i++)
        phi[i] = i;
    for(ll i = 2;i < maxn;i++)
    {
        if(phi[i] == i)
        {
            for(ll j = i;j < maxn;j+=i)
            {
                phi[j] = phi[j] / i * (i-1);
            }
        }
    }
}

ll euler(ll n)  //求单个的欧拉函数 
{
    ll ans = n;
    for(ll i = 2;i*i <= n;i++)
    {
        if(n % i == 0)  ans = ans / i * (i-1); 
        while(n % i == 0)   n /= i; 
    }
    if(n > 1) ans = ans / n * (n - 1);
    return ans;
}


ll gcd(ll a,ll b)  //最大公约数 
{
    return b == 0 ? a : gcd(b,a%b);
}

ll lcm(ll a,ll b) //最小公倍数 
{
    return a/gcd(a,b)*b;
}




int main()
{

    ll a,b;
    while(~scanf("%lld %lld",&a,&b))
    {
        printf("%lld\n",quick(a,b));
    }
//  
//  while(~scanf("%lld %lld",&a,&b))
//  {
//      printf("%lld %lld\n",gcd(a,b),lcm(a,b));
//  }

//  getPri();
//  
//  for(int i = 0;i < 20;i++)
//  {
//      if(!pri[i])
//      {
//          printf("%d\n",i);
//      }
//  }

//  while(~scanf("%lld",&a))
//  {
//      printf("%lld\n",euler(a));
//  }

//  getPhi();
//  for(int i = 0;i < 10;i++)
//  {
//      printf("%d = %lld\n",i,phi[i]);
//  }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值